Simscape ${ }^{\text {TM }}$ Multibody ${ }^{\text {TM }}$

Reference

MATLAB ${ }^{\circ}$ \&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simscape ${ }^{\text {TM }}$ Multibody ${ }^{\mathrm{TM}}$ Reference

© COPYRIGHT 2002-2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

March 2012	Online only	New for Version 4.0 (Release R2012a)
September 2012	Online only	Revised for Version 4.1 (Release R2012b)
March 2013	Online only	Revised for Version 4.2 (Release R2013a)
September 2013	Online only	Revised for Version 4.3 (Release R2013b)
March 2014	Online only	Revised for Version 4.4 (Release R2014a)
October 2014	Online only	Revised for Version 4.5 (Release R2014b)
March 2015	Online only	Revised for Version 4.6 (Release R2015a)
September 2015	Online only	Revised for Version 4.7 (Release R2015b)
March 2016	Online only	Revised for Version 4.8 (Release R2016a)

Blocks-Alphabetical List

Configuration Parameters

2

Simscape Multibody Pane: General 2-2
Simscape Multibody Pane Overview 2-2
Simscape Multibody Pane: Diagnostics 2-3
Invalid visual properties 2-4
Repeated vertices in a cross-section 2-5
Unconnected frame port 2-6
Unconnected Geometry port 2-6
Redundant block 2-8
Conflicting reference frames 2-9
Rigidly constrained block 2-10
Unsatisfied high priority state targets 2-11
Overspecified targets in kinematic loops 2-12
Simscape Multibody Pane: Explorer 2-13
Open Mechanics Explorer on model update or simulation 2-13
Simscape Multibody Visualization
3
Visualization with Mechanics Explorer 3-2
Introduction to Mechanics Explorer 3-2
Visualization Requirements 3-4
Configure Mechanics Explorer for Automatic Start-Up 3-4
Open Mechanics Explorer 3-4
Menu and Tool Bars 3-7
Menu Bar 3-7
Toolbar 3-8
Tree View and Property Panes 3-10
Introduction to Tree View and Property Panes 3-10
Browse Model 3-10
Context Menu Display Controls 3-12
Animation Toolstrip 3-13
Requirements for Animation Recording and Playback 3-13
How Animation and Playback Work 3-13
Play Control Buttons 3-14
Slider and Loop Controls 3-14
Playback Speed Control 3-15
Playback Time Counter 3-15
Global and Dynamic Cameras 3-16
Camera Manager 3-16
Camera Overview 3-16
Global Camera 3-17
Dynamic Cameras 3-17
Camera Keyframes 3-18
Setting Keyframes 3-18
Functions-Alphabetical List

Blocks - Alphabetical List

6-DOF Joint

Joint with one spherical and three prismatic primitives

Library

Joints

Description

This block represents a joint with three translational and three rotational degrees of freedom. Three prismatic primitives provide the translational degrees of freedom. One spherical primitive provides the three rotational degrees of freedom.

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Translation:
a Along the X axis of the X Prismatic Primitive (Px) base frame.
b Along the Y axis of the Y Prismatic Primitive (Py) base frame. This frame is coincident with the X Prismatic Primitive (Px) follower frame.
c Along the Z axis of the Z Prismatic Primitive (Pz) base frame. This frame is coincident with the Y Prismatic Primitive (Py) follower frame.

2 Rotation:

- About a general 3-D axis resolved in the base frame. This frame is coincident with the Z Prismatic Primitive (Pz) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation. Because 3-D rotation occurs as a single rotation about an arbitrary 3-D axis (as opposed to three separate rotations about the X, Y, Z axes), gimbal lock does not occur.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs
that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

Dialog Box and Parameters

Description

©. 6-DOF Joint: 6-DOF Joint
$\square \square$

Represents a 6-DOF joint between two frames. This joint has three translational and three rotational degrees of freedom represented by three prismatic primitives axes along a set of mutually orthogonal axes, plus a spherical primitive. This joint allows unconstrained 3-D translation and rotation. The follower origin first translates relative to the base frame. The follower frame then rotates freely, with the follower origin as the pivot.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.

```
Properties
= X Prismatic Primitive (Px)
    # State Targets
    # Internal Mechanics
    # Actuation
    # Sensing
I Y Prismatic Primitive (Py)
# Z Prismatic Primitive (Pz)
# Spherical Primitive (S)
# Composite Force/Torque Sensing
OK Cancel Help Apply
```


Prismatic Primitive: State Targets

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and m / s for velocity.

Prismatic Primitive: Internal Mechanics

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

Spring Stiffness

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is N / m.

Damping Coefficient

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $\mathrm{N} /(\mathrm{m} / \mathrm{s})$.

Prismatic Primitive: Actuation

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

Force

Select an actuation force setting. The default setting is None.

Actuation Force Setting	Description
None	No actuation force.
Provided by Input	Actuation force from physical signal input. The signal provides the force acting on the follower frame with respect to the base frame along the joint primitive axis. An equal and opposite force acts on the base frame.

Actuation Force Setting	Description
Automatically computed	Actuation force from automatic calculation. Simscape ${ }^{\mathrm{TM}}$ Multibody ${ }^{\mathrm{TM}}$ computes and applies the actuation force based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Prismatic Primitive: Sensing

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Velocity

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Acceleration

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Actuator Force

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

Spherical Primitive: State Targets

Specify the spherical primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Low-priority targets behave as rough guides.

Value

Select a method to specify the joint primitive state target.

Method	Description
None	Constrain the base and follower frames to share the same orientation.

Method	Description
Aligned Axes	Set frame rotation by aligning two follower frame axes with two base frame axes.
Standard Axis	Specify frame rotation as an angle about a standard axis $(x, y$, or $z)$.
Arbitrary Axis	Specify frame rotation as an angle about a general $[x, y, z]$ axis.
Rotation Sequence	Specify frame rotation as a sequence of three elementary rotations.
Rotation Matrix	Specify frame rotation as a right-handed orthogonal rotation matrix.

Aligned Axes

Select two pairs of base-follower frame axes.

Parameter	Description
Pair 1	First pair of base-follower frame axes to align.
Pair 2	Second pair of base-follower frame axes to align. Axis choices depend on Pair 1 axis selections.

Standard Axis

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	Standard rotation axis (X, Y, or Z) resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	General rotation axis [X Y Z] resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Rotation Sequence

Specify a sequence of three elementary rotations about the selected permutation of x, y, and z axes. These rotation sequences are also known as Euler and Tait-Bryan sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.

Parameter	Description
Rotation About	Frame whose axes to rotate the follower frame about.
Sequence	Sequence of axes about which to apply the elementary rotations.
Angles	Three-element vector with elementary rotation angles about the axes specified in the Sequence parameter.

Rotation Matrix

Specify the 3×3 transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is $\left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & 1 & 0 ; & 0\end{array}\right]$.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity of the follower frame with respect to the base frame. It
is resolved in the base frame. Selecting this option exposes priority and value fields. The priority field is identical to that used for the position state target.

Value

Enter a three element vector with the angular velocity components of the follower frame with respect to the base frame. Select a physical unit. The default is deg/s (degree/second).

Resolution Frame

From the drop-down list, select a resolution frame. This is the frame in which the state target is resolved. It identifies the axes the velocity vector components apply to. The default is Follower.

Spherical Primitive: Internal Mechanics

Specify the spherical primitive internal mechanics. This includes linear spring and damping forces, accounting for energy storage and dissipation, respectively. To ignore internal mechanics, keep spring stiffness and damping coefficient values at the default value of 0 .

Equilibrium Position

Select a method to specify the spring equilibrium position. The equilibrium position is the rotation angle between base and follower port frames at which the spring torque is zero.

Method	Description
None	Constrain the base and follower frames to share the same orientation.
Aligned Axes	Set frame rotation by aligning two follower frame axes with two base frame axes.
Standard Axis	Specify frame rotation as an angle about a standard axis $(x, y$, or $z)$.
Arbitrary Axis	Specify frame rotation as an angle about a general $[x, y, z]$ axis.
Rotation Sequence	Specify frame rotation as a sequence of three elementary rotations.

Method	Description
Rotation Matrix	Specify frame rotation as a right-handed orthogonal rotation matrix.

Aligned Axes

Select two pairs of base-follower frame axes.

Parameter	Description
Pair 1	First pair of base-follower frame axes to align.
Pair 2	Second pair of base-follower frame axes to align. Axis choices depend on Pair 1 axis selections.

Standard Axis

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	Standard rotation axis (X, Y, or Z) resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Arbitrary Axis

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	General rotation axis [X Y Z] resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Rotation Sequence

Specify a sequence of three elementary rotations about the selected permutation of x, y, and z axes. These rotation sequences are also known as Euler and Tait-Bryan sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.

Parameter	Description
Rotation About	Frame whose axes to rotate the follower frame about.
Sequence	Sequence of axes about which to apply the elementary rotations.
Angles	Three-element vector with elementary rotation angles about the axes specified in the Sequence parameter.

Rotation Matrix

Specify the 3×3 transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is [1100; $0110 ; 0011]$.

Spring Stiffness

Enter the linear spring constant. This is the torque required to displace the joint primitive by a unit angle. The term linear refers to the mathematical form of the spring equation. The default is 0 . Select a physical unit. The default is $\mathrm{N} * \mathrm{~m} / \mathrm{deg}$.

Damping Coefficient

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select a physical unit. The default is $N * m /(\mathrm{deg} / \mathrm{s})$.

Spherical Primitive: Actuation

Specify actuation options for the spherical joint primitive. Actuation modes include Torque only. Selecting a torque input adds the corresponding physical signal port to the block. Use this port to specify the actuation torque signal.

Torque

Select a source for the actuation torque. The default setting is None.

Actuation Torque Setting
None
Provided by Input

Description

Apply no actuation torque.
Apply an actuation torque based on a physical signal. The signal specifies the torque acting on the follower frame with respect to the base frame. An equal and opposite torque acts on the base frame. Selecting this option exposes additional parameters.

Torque (X), Torque (Y), Torque (Z)

Select in order to actuate the spherical joint primitive about each standard Cartesian axis (X, Y, Z) separately. The block exposes the corresponding physical signal ports. Use these ports to specify the actuation torque signals. The signals must be scalar values.

Torque (XYZ)

Select in order to actuate the spherical joint primitive about an arbitrary axis [X Y Z]. The block exposes the corresponding physical signal port. Use this port to specify the actuation torque signal. The signal must be a $3-\mathrm{D}$ vector.

Frame

Select the frame to resolve the actuation torque signal in. The axes of this frame establish the directions of the X, Y, and Z torque components. The default setting is Base.

Spherical Primitive: Sensing

Select the motion variables to sense in the spherical joint primitive. The block adds the corresponding physical signal ports. Use these ports to output the numerical values of the motion variables.

The block measures each motion variable for the follower frame with respect to the base frame. It resolves that variable in the resolution frame that you select from the Frame drop-down list.

Motion Variables	Description
Position	Quaternion describing follower frame rotation with respect to base frame. The quaternion coefficients are $\left[\cos \left(\frac{\theta}{2}\right), n_{x} \sin \left(\frac{\theta}{2}\right), n_{y} \sin \left(\frac{\theta}{2}\right), n_{z} \sin \left(\frac{\theta}{2}\right)\right]$. The measurement is the same in all measurement frames.
Velocity (X), Velocity (Y), Velocity (Z)	Angular velocity components about X, Y, and Z axes.
Velocity	$3-D$ angular velocity vector with components about X, Y, and Z axes.
Acceleration (X), Acceleration (Y), Acceleration (Z)	Angular acceleration components about X, Y, and Z axes.
Acceleration	$3-\mathrm{D}$ angular acceleration vector with components about X, Y, and Z axes.

Frame

Select the frame to resolve the measurement in. The axes of this frame establish the directions of X, Y, and Z vector components. The default setting is Base.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector $\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.$, $f c_{z}$] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector $\left[t c_{x}, t c_{y}\right.$, $t c_{\mathrm{z}}$] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft .

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3 -D total torque vector [$t t_{\mathrm{x}}, t t_{\mathrm{y}}$, $t t_{\mathrm{z}}$]. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B-Base frame
- F - Follower frame

Actuation Ports

The prismatic joint primitives provide the following actuation ports:

- fx, fy, fz - Actuation forces of the X, Y, and Z prismatic joint primitives
- px, py, pz - Desired trajectories of the X, Y, and Z prismatic joint primitives

The spherical joint primitive provides the following actuation ports:

- t - Actuation torque vector $[t x, t y, t z]$ acting on the spherical joint primitive
- tx, ty, tz - X, Y, and Z components of the actuation torque acting on the spherical joint primitive

Sensing Ports

The prismatic primitives provide the following sensing ports:

- px, py, pz — Positions of the X, Y, and Z prismatic joint primitives
- vx, vy, vz - Velocities of the X, Y, and Z prismatic joint primitives
- ax, ay, az - Accelerations of the X, Y, and Z prismatic joint primitives
- fx, fy, fz - Actuation forces acting on the X, Y, and Z prismatic joint primitives

The spherical primitive provides the following sensing ports:

- Q - Orientation of the spherical joint primitive in quaternion form
- wx, wy, wz - X, Y, and Z angular velocity components of the spherical joint primitive
- w - Angular velocity $[w x, w y, w z]$ of the spherical joint primitive
- bx, by, bz - X, Y, and Z angular acceleration components of the spherical joint primitive
- b-Angular acceleration [bx,by,bz] of the spherical joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

```
See Also
Bushing Joint| Prismatic Joint | Spherical Joint
```


More About

- "Motion Sensing"
- "Measurement Frames"
- "Actuating and Sensing Using Physical Signals"

Angle Constraint

Fixed angle between two frame Z axes

Library

Constraints

Description

This block applies a fixed angle between the Z axes of the base and follower port frames. The frames lose one rotational degree of freedom if the constraint angle is greater than 0° and smaller than 180°. They lose two rotational degrees of freedom if the constraint angle is exactly 0° or 180°-that is, if the frames are parallel or anti-parallel. The figure shows the constraint angle between two frames.

Dialog Box and Parameters

Angle Constraint: Angle Constraint

Description
Maintains a specified angle between the z-axes of two frames. In the nodes under Properties, select the type of constraint and angle value (for General type).

Ports B and F are frame ports that represent the base and follower frames, respectively. The constraint angle runs from the base z-axis to the follower z -axis.

Properties

Type	General	
Angle	45	deg

- Constraint Torque Sensing

Direction	Follower on Base
Resolution Frame	Base
Torque Vector	\square
Signed Torque Magnitude	\square

Type

Angle constraint type. The default setting is General.

Type	Purpose
Parallel	Align the base and follower frame +Z axes.
Anti-Parallel	Align the base frame +Z axis with the follower frame -Z axis.
Perpendicular	Make the base and follower frame Z axes perpendicular to each other.

Type	Purpose
General	Hold the specified angle between the Z axes of the base and follower port frames.

Angle

Constraint angle between the base and follower frame Z axes. The angle must lie in the range $0<\theta<180 \mathrm{deg}$. For an angle of 0 or 180 deg , set Type to Parallel or Anti-Parallel instead. The default value is 45 deg .

Constraint Torque Sensing

Select whether to compute and output the distance constraint torque vector and its magnitude. The distance constraint torque is the torque the block must apply in order to maintain the angle you specify between the base and follower port frames.

Direction

Constraint torques act in pairs. As expressed by Newton's third law of motion, if the base port frame exerts a constraint torque on the follower port frame, then the follower port frame must exert an equal and opposite torque on the base port frame.
Select which of the two constraint torques to sense:

- Follower on Base - Sense the constraint torque that the follower port frame exerts on the base port frame.
- Base on Follower - Sense the constraint torque that the base port frame exerts on the follower port frame.

Resolution Frame

The block expresses the constraint torque vector in terms of its Cartesian vector components. The splitting of a vector into vector components is known as vector resolution. The frame whose axes define the vector component directions is known as the resolution frame. Select whether to resolve the constraint torque vector in the base or follower port frame.

Torque Vector

Compute and output the Cartesian components of the angle constraint torque vector. The output signal is a three-dimensional vector with components expressed about the X, Y, and Z axes of the resolution frame.

Signed Torque Magnitude

Compute and output the magnitude of the angle constraint torque, including its sign.

Ports

The block provides two frame ports:

- B-Base frame port
- F - Follower frame port

In addition, the block provides two physical signal output ports:

- t - Angle constraint torque vector
- tm - Signed magnitude of the angle constraint torque

See Also

Distance Constraint

Bearing Joint

Joint with one prismatic and three revolute primitives

Library

Joints

Description

This block represents a joint with one translational and three rotational degrees of freedom. One prismatic primitive provides the translational degree of freedom. Three revolute primitives provide the three rotational degrees of freedom.

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Translation:

- Along the Z axis of the Z Prismatic Primitive (Pz) base frame.

2 Rotation:
a About the X axis of the X Revolute Primitive (Rx) base frame. This frame is coincident with the Z Prismatic Primitive (Pz) follower frame.
b About the Y axis of the Y Revolute Primitive (Ry) base frame. This frame is coincident with the X Revolute Primitive (Rx) follower frame.
c About the Z axis of the Z Revolute Primitive (Rz) base frame. This frame is coincident with the Y Revolute Primitive (Ry) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation. Because 3-D rotation occurs as a sequence, it is possible for two axes to align, causing to the loss of one rotational degree of freedom. This phenomenon is known as gimbal lock.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs
that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

D:alan Davend Damamantomen

Bearing Joint : Bearing Joint \square
Description
Represents a bearing joint between two frames. This joint has one translational and three rotational degrees of freedom represented by one prismatic primitive and three revolute primitives along a set of mutually orthogonal axes. This joint prohibits relative translation in the base xy-plane. The follower origin first translates along the base z-axis, while the base and follower axes remain aligned. The follower axes then rotate around the follower x-axis, y-axis, and z-axis, in that order.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.

```
Properties
= Z Prismatic Primitive (Pz)
    # State Targets
    # Internal Mechanics
    # Actuation
    # Sensing
# X Revolute Primitive (Rx)
#+ Y Revolute Primitive (Ry)
+ Z Revolute Primitive (Rz)
# Composite Force/Torque Sensing
```


Prismatic Primitive: State Targets

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and m / s for velocity.

Prismatic Primitive: Internal Mechanics

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

Spring Stiffness

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is N / m.

Damping Coefficient

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $N /(\mathrm{m} / \mathrm{s})$.

Prismatic Primitive: Actuation

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

Force

Select an actuation force setting. The default setting is None.

Actuation Force Setting	Description
None	No actuation force.
Provided by Input	Actuation force from physical signal input. The signal provides the force acting on the follower frame with respect to the base frame along the joint primitive axis. An equal and opposite force acts on the base frame.

Actuation Force Setting	Description
Automatically computed	Actuation force from automatic calculation. Simscape Multibody computes and applies the actuation force based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Prismatic Primitive: Sensing

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Velocity

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Acceleration

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Actuator Force

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

Revolute Primitive: State Targets

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

Revolute Primitive: Internal Mechanics

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

Spring Stiffness

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is $N * m / d e g$.

Damping Coefficient

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $N * m /(\mathrm{deg} / \mathrm{s})$.

Revolute Primitive: Actuation

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

Torque

Select an actuation torque setting. The default setting is None.

Actuation Torque Setting	Description
None	No actuation torque.

Actuation Torque Setting	Description
Provided by Input	Actuation torque from physical signal input. The signal provides the torque acting on the follower frame with respect to the base frame about the joint primitive axis. An equal and opposite torque acts on the base frame.
Automatically computed	Actuation torque from automatic calculation. Simscape Multibody computes and applies the actuation torque based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Revolute Primitive: Sensing

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

Velocity

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

Acceleration

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

Actuator Torque

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fcx, $f c_{\mathrm{y}}$, $f c_{z}$] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector $\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.$, $t c_{\mathrm{z}}$] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft .

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3 -D total torque vector [$t t_{\mathrm{x}}, t t_{\mathrm{y}}$, $\left.t t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B-Base frame
- F - Follower frame

Actuation Ports

The prismatic joint primitive provides the following actuation ports:

- fz - Actuation force acting on the Z prismatic joint primitive
- pz — Desired trajectory of the Z prismatic joint primitive

The revolute joint primitives provide the following actuation ports:

- tx, ty, tz - Actuation torques acting on the X, Y, and Z revolute joint primitives
- qx, qy, qz - Desired rotations of the X, Y, and Z revolute joint primitives

Sensing Ports

The prismatic primitive provides the following sensing ports:

- pz - Position of the Z prismatic joint primitive
- vz - Velocity of the Z prismatic joint primitive
- az - Acceleration of the Z prismatic joint primitive
- fz - Actuation force acting on the Z prismatic joint primitive

The revolute primitives provide the following sensing ports:

- qx, qy, qz - Angular positions of the X, Y, and Z revolute joint primitives
- wx, wy, wz - Angular velocities of the X, Y, and Z revolute joint primitives
- bx, by, bz - Angular accelerations of the X, Y, and Z revolute joint primitives
- tx, ty, tz - Actuation torques acting on the X, Y, and Z revolute joint primitives

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

See Also

Prismatic Joint | Revolute Joint

More About

- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"
- "Translational Measurements"

Bevel Gear Constraint

Kinematic constraint for transferring rotational motion at a fixed ratio about arbitrarily oriented axes

Library

Gears and Couplings/Gears

Description

This block represents a bevel gear constraint between two frames. The constraint restricts motion such that rotation of the base frame causes rotation of the follower frame and vice-versa. The two frames spin as meshed gears about the individual Z axes, each aligned with a bevel gear shaft.

The two shafts can lie at an arbitrary angle to each other. This angle, always between 0° and 180°, corresponds to a configuration in which the two +Z axes are either parallel or converging toward each other. At 90° the two shafts are perpendicular. At 0°, the two gears are parallel and the bevel gear functions as a spur gear.

During simulation, the remainder of the mechanism must hold the gears in alignment. The gear shafts must lie at the distance and angle specified in the block dialog box. The distance between the base and follower frame origins, which represent the two gear shafts, follows from the law of cosines:

$$
D^{2}=R_{B}^{2}+R_{F}^{2}-2 \cdot R_{B} \cdot R_{F} \cdot \cos (\pi-\theta),
$$

where:

- D is the distance between the two frame origins.
- $R_{\mathrm{B}}, R_{\mathrm{F}}$ are the pitch radii of the base gear and follower gears.
- θ is the angle between the base and follower gear shafts.

Bevel gear Schematic

Dialog Box and Parameters

Bevel Gear Constraint: Bevel Gear Co...
 \square

Description
Represents a bevel gear constraint between two frames. The block constrains the base and follower frames to corotate as meshed gears. The base and follower gears rotate about the base and follower z axes respectively.

The pitch circle radii of the base and follower gears can be specified to define the geometry of the gears. The block can model right-angled and angular bevel gears. During simulation, the gears must be held in alignment by the rest of the mechanism.

Ports B and F are frame ports that represent the base and follower frames, respectively.

Properties

Base Gear Radius	10.0	cm	-
Follower Gear ...	10.0	cm	-
Shaft Axes	Perpendicular		-

Base Gear Radius

Enter the pitch circle radius of the base gear. This is the radius at which the base gear teeth contact the follower gear teeth. Select a physical unit. The default is 10.0 cm .

Follower Gear Radius

Enter the pitch circle radius of the follower gear. This is the radius at which the follower gear teeth contact the base gear teeth. Select a physical unit. The default is 10.0 cm .

Shaft Axes

Select the relative orientation between the spinning shafts of the base and follower gears. Options include Perpendicular and Arbitrarily Oriented:

- Perpendicular - Orient the two spinning shafts at a right angle to each other. This is the default setting.
- Arbitrarily Oriented - Orient the two spinning shafts at a general angle to each other. Selecting this option exposes an additional parameter.

Angle Between Shafts

Enter the angle between the spinning shafts of the base and follower gears. Select a physical unit. The default value is 90 deg.

Ports

The block contains frame ports B and F, representing base and follower frames, respectively.

See Also

Rack and Pinion Constraint | Common Gear Constraint

Bushing Joint

Joint with three prismatic and three revolute primitives

Library

Joints

Description

This block represents a joint with three translational and three rotational degrees of freedom. Three prismatic primitives provide the translational degrees of freedom. Three revolute primitives provide the rotational degrees of freedom.

\longrightarrow Translational Degree of Freedom Rotational Degree of Freedom

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Translation:

a Along the X axis of the X Prismatic Primitive (Px) base frame.
b Along the Y axis of the Y Prismatic Primitive (Py) base frame. This frame is coincident with the X Prismatic Primitive (Px) follower frame.
c Along the Z axis of the Z Prismatic Primitive (Pz) base frame. This frame is coincident with the Y Prismatic Primitive (Py) follower frame.
2 Rotation:
a About the X axis of the X Revolute Primitive (Rx) base frame. This frame is coincident with the Z Prismatic Primitive (Pz) follower frame.
b About the Y axis of the Y Revolute Primitive (Ry) base frame. This frame is coincident with the X Revolute Primitive (Rx) follower frame.
c About the Z axis of the Z Revolute Primitive (Rz) base frame. This frame is coincident with the Y Revolute Primitive (Ry) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation. Because 3-D rotation occurs as a sequence, it is possible for two axes to align, causing to the loss of one rotational degree of freedom. This phenomenon is known as gimbal lock.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

Bushing Joint : Bushing Joint

\square

Description

Represents a bushing joint between two frames. This joint has three translational and three rotational degrees of freedom represented by three prismatic primitives and three revolute primitives. Each set of primitive axes is mutually orthogonal. This joint allows unconstrained, combined 3-D translation and rotation. The follower frame first translates along the follower x-axis, y-axis, and z-axis, in that order, then rotates around each axis in the same order.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
= X Prismatic Primitive (Px)
\pm State Targets
\pm Internal Mechanics
\pm Actuation
\pm Sensing
I Y Prismatic Primitive (Py)
† Z Prismatic Primitive (P_{z})

+ X Revolute Primitive (Rx)
+ Y Revolute Primitive (Ry)
\# Z Revolute Primitive (Rz)
+ Composite Force/Torque Sensing

Prismatic Primitive: State Targets

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and m / s for velocity.

Prismatic Primitive: Internal Mechanics

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

Spring Stiffness

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is N / m.

Damping Coefficient

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $N /(\mathrm{m} / \mathrm{s})$.

Prismatic Primitive: Actuation

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

Force

Select an actuation force setting. The default setting is None.

Actuation Force Setting	Description
None	No actuation force.
Provided by Input	Actuation force from physical signal input. The signal provides the force acting on the follower frame with respect to the base frame along the joint primitive axis. An equal and opposite force acts on the base frame.

Actuation Force Setting	Description
Automatically computed	Actuation force from automatic calculation. Simscape Multibody computes and applies the actuation force based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Prismatic Primitive: Sensing

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Velocity

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Acceleration

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Actuator Force

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

Revolute Primitive: State Targets

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

Revolute Primitive: Internal Mechanics

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

Spring Stiffness

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is $N * m / d e g$.

Damping Coefficient

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $N * m /(\mathrm{deg} / \mathrm{s})$.

Revolute Primitive: Actuation

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

Torque

Select an actuation torque setting. The default setting is None.

Actuation Torque Setting	Description
None	No actuation torque.

Actuation Torque Setting	Description
Provided by Input	Actuation torque from physical signal input. The signal provides the torque acting on the follower frame with respect to the base frame about the joint primitive axis. An equal and opposite torque acts on the base frame.
Automatically computed	Actuation torque from automatic calculation. Simscape Multibody computes and applies the actuation torque based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Revolute Primitive: Sensing

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

Velocity

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

Acceleration

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

Actuator Torque

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fcx, $f c_{\mathrm{y}}$, $f c_{z}$] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector $\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.$, $t c_{\mathrm{z}}$] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft .

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3 -D total torque vector [$t t_{\mathrm{x}}, t t_{\mathrm{y}}$, $t t_{\mathrm{z}}$]. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B-Base frame
- F - Follower frame

Actuation Ports

The prismatic joint primitives provide the following actuation ports:

- fx, fy, fz - Actuation forces acting on the X, Y, and Z prismatic joint primitives
- px, py, pz - Desired trajectories of the X, Y, Z prismatic joint primitives

The revolute joint primitives provide the following actuation ports:

- tx, ty, tz - Actuation torques acting on the X, Y, and Z revolute joint primitives
- qx, qy, qz - Desired rotations of the X, Y, and Z revolute joint primitives

Sensing Ports

The prismatic joint primitives provide the following sensing ports:

- px, py, pz — Positions of the X, Y, and Z prismatic joint primitives

- ax, ay, az - Accelerations of the X, Y, and Z prismatic joint primitives
- fx, fy, fz - Actuation forces acting on the X, Y, and Z prismatic joint primitives

The revolute joint primitives provide the following sensing ports:

- qx, qy, qz - Angular positions of the X, Y, and Z revolute joint primitives
- wx, wy, wz - Angular velocities of the X, Y, and Z revolute joint primitives
- bx, by, bz - Angular accelerations of the X, Y, and Z revolute joint primitives
- tx, ty, tz - Actuation torques acting on the X, Y, and Z revolute joint primitives

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc-Constraint torque
- ft - Total force
- tt - Total torque

See Also

6-DOF Joint | Gimbal Joint | Prismatic Joint | Revolute Joint

More About

- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"
- "Translational Measurements"

Cartesian Joint

Joint with three prismatic primitives

Library

Joints

Description

This block represents a joint with three translational degrees of freedom. Three prismatic primitives provide the three translational degrees of freedom. The base and follower frames remain parallel during simulation.

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Translation:

a Along the X axis of the X Prismatic Primitive (Px) base frame.
b Along the Y axis of the Y Prismatic Primitive (Py) base frame. This frame is coincident with the X Prismatic Primitive (Px) follower frame.
c Along the Z axis of the Z Prismatic Primitive (Pz) base frame. This frame is coincident with the Y Prismatic Primitive (Py) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

Dialog Box and Parameters

```
Cartesian Joint : Cartesian Joint \(\square\)
Description
Represents a cartesian joint between two frames. This joint has three translational degrees of freedom represented by three prismatic primitives along a set of mutually orthogonal axes. This joint constrains the axes of these frames remain aligned, while allowing unconstrained 3-D translation.
In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.
```

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties

- X Prismatic Primitive (Px)
\# State Targets
\pm Internal Mechanics
\pm Actuation
\pm Sensing
+ Y Prismatic Primitive (Py)
+ Z Prismatic Primitive (P_{z})
+ Composite Force/Torque Sensing

Prismatic Primitive: State Targets

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and m / s for velocity.

Prismatic Primitive: Internal Mechanics

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

Spring Stiffness

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is N / m.

Damping Coefficient

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $\mathrm{N} /(\mathrm{m} / \mathrm{s})$.

Prismatic Primitive: Actuation

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

Force

Select an actuation force setting. The default setting is None.

Actuation Force Setting	Description
None	No actuation force.
Provided by Input	Actuation force from physical signal input. The signal provides the force acting on the follower frame with respect to the base frame along the joint primitive axis. An equal and opposite force acts on the base frame.

Actuation Force Setting	Description
Automatically computed	Actuation force from automatic calculation. Simscape Multibody computes and applies the actuation force based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Prismatic Primitive: Sensing

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Velocity

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Acceleration

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Actuator Force

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint
force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector $\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.$, $f c_{\mathrm{z}}$] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector [$t c_{\mathrm{x}}, t c_{\mathrm{y}}$, $t c_{z}$] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft .

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector $\left[t t_{\mathrm{x}}, t t_{\mathrm{y}}\right.$, $\left.t t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B-Base frame
- F - Follower frame

Actuation Ports

The prismatic joint primitives provide the following actuation ports:

- fx, fy, fz - Actuation forces acting on the X, Y, and Z prismatic joint primitives
- px, py, pz — Desired trajectories of the X, Y, Z prismatic joint primitives

Sensing Ports

The prismatic joint primitives provide the following sensing ports:

- px, py, pz — Positions of the X, Y, and Z prismatic joint primitives
- vx, vy, vz - Velocities of the X, Y, and Z prismatic joint primitives
- ax, ay, az - Accelerations of the X, Y, and Z prismatic joint primitives
- fx, fy, fz - Actuation forces acting on the X, Y, and Z prismatic joint primitives

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

See Also

Prismatic Joint | Rectangular Joint

More About

- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Translational Measurements"

Common Gear Constraint

Kinematic constraint for transferring rotational motion at a fixed ratio about parallel axes

Library

Gears and Couplings/Gears

Description

This block represents a common gear constraint between two frames, base and follower. The constraint restricts motion, forcing the frames to spin in sync. Each frame, possessing at least one rotational degree of freedom, spins about its individual Z axis.

To assemble, the common gear constraint imposes several restrictions on the relative position and orientation of the port frames. Through blocks such as Rigid Transform, Joints, and Constraints, the remainder of the model must provide the geometric and kinematic relationships to satisfy these restrictions:

- The Z axes of the base and follower frames must point in the same direction.
- The X and Y axes of the base and follower frames, and therefore the frame origins themselves, must lie in the same plane.

The common gear constraint can be internal or external. If the constraint is internal, the base and follower gear shafts spin in the same direction. If it is external, the shafts spin in opposite directions. The tooth ratio between the two gears determines the magnitude of the angular velocity ratio:

$$
\left|\frac{\omega_{F}}{\omega_{B}}\right|=\frac{N_{B}}{N_{F}}=\frac{R_{B}}{R_{F}},
$$

where:

- ω_{B} and ω_{F} are the angular velocities of the base and follower gears.
- N_{B} and N_{F} are the tooth numbers of the base and follower gears.
- R_{B} and R_{F} are the pitch radii of the base and follower gears. These are the radii of the gear pitch circles, imaginary circles tangent to each other at the tooth-tooth contact point.

Gear Frames and Dimensions

Dialog Box and Parameters

Common Gear Constraint : Common ...
Description -
Represents a common gear constraint between two frames.
The block constrains the base and follower frames to
corotate as meshed gears. The base and follower gears
rotate about the base and follower z axes respectively.
Either the center distance and gear ratio (follower teeth/base
teeth) or the pitch circle radii of the base and follower gears
can be specified to define the geometry of the gears. During
simulation, the gears must be held in alignment by the rest
of the mechanism.
Ports B and F are frame ports that represent the base and follower frames, respectively. Properties Type External Specification Method Center Distance and Ratio Center Distance 20.0 Gear Ratio (Nf/Nb) 1.0

Type

Select gear type. Options include internal or external. Internal gears have teeth along the inner circumference. External gears have teeth along the outer circumference. The default type is External.

Specification Method

Select the method to specify the common gear with. Options include Center Distance and Ratio and Pitch Circle Radii.

Center Distance and Ratio

Specify the common gear constraint in terms of the center-to-center separation distance and the gear teeth ratio ($\mathrm{Nf} / \mathrm{Nb}$).

Center Distance

Enter the center-to-center distance between base and follower gears. Select a physical unit. The default value is 20.0 cm .

Gear Ratio

Enter the gear teeth ratio between base and follower gears. This ratio is $\mathrm{Nf} / \mathrm{Nb}$, where Nf and Nb represent the number of teeth in the follower and base gears, respectively. The default value is 1.0 .

Pitch Circle Radii

Specify the common gear in terms of the base and follower gear radii.

Base Gear Radius

Enter the radius of the gear associated with the base frame. Select a physical unit. The default value is 10.0 cm .

Follower Gear Radius

Enter the radius of the gear associated with the follower frame. Select a physical unit. The default value is 10.0 cm .

Ports

The block contains frame ports B and F, representing base and follower frames, respectively.

See Also
Rack and Pinion Constraint | Bevel Gear Constraint

Constant Velocity Joint

Joint with two rotational DoFs between shafts constrained to spin with equal velocity

Library

Joints

Description

This block represents a joint with two rotational degrees of freedom constrained to maintain a constant angular velocity about the base and follower Z axes. The base and follower frame origins remain coincident throughout simulation.

The joint applies three rotation transformations between the base and follower frames in the sequence azimuth \rightarrow bend angle \rightarrow-azimuth. Each transformation takes place relative to the intermediate frame resulting from any prior transformations. For example, the bend angle transformation takes place relative to the intermediate frame resulting from the azimuth transformation.

Joint Degrees of Freedom

A set of optional state targets guide assembly for the joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Optional sensing ports output the joint primitive motion through physical signals. Motion variables that you can sense include joint position, velocity, and acceleration. Selecting a variable in the Sensing menu exposes the physical signal port for that variable.

Dialog Box and Parameters

7 Constant Velocity Joint : Constant Vel...
 \square

Description
Represents a constant-velocity joint between two frames. This joint has two degrees of freedom represented by one constant-velocity primitive. The joint constrains the origins of the two frames to be coincident and enforces a kinematic constraint which provides a constant-velocity relationship between the base and follower frames. Specifically, if the base and follower frame z-axes are both fixed with respect to a common reference frame, then the component along the follower frame's z-axis of the follower frame's angular velocity with respect to the common reference frame is equal to the component along the base frame's z-axis of the base frame's angular velocity with respect to the common reference frame.

In the expandable nodes under Properties, specify the state and sensing capabilities of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
= Constant Velocity Primitive (CV)
\pm State Targets
\pm Sensing

+ Composite Force/Torque Sensing

Constant Velocity Primitive: State Targets

Specify Position Target

Desired joint primitive position at the start of simulation. This is the relative angular position of the follower frame relative to the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Desired joint velocity at the start of simulation. This is the relative angular velocity of the follower frame relative to the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Low-priority targets behave as rough guides.

Value

Joint primitive angles to specify. Angles include bend and azimuth angles.

Value: Bend Angle

Angle between the base and follower frame Z axes. The block applies this angle about the rotated Y axis resulting from the azimuth transformation. At zero bend angle, the follower frame Z axis is coincident with the base frame Z axis.

Value: Azimuth

Angle about the base frame Z axis prior to bending. At zero azimuth, the base and follower Z axes are in the XZ plane of the base frame.

Constant Velocity Primitive: Sensing

Select the variables to sense in the constant velocity joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame.

Variable	Description
Bend Angle: Position	Angle between the base and follower frame Z axes
Bend Angle: Velocity	First time derivative of the bend angle.
Bend Angle: Acceleration	Second time derivative of the bend angle.
Azimuth: Position	Angle about the base frame Z axis prior to bending.
Azimuth: Velocity	First time derivative of the azimuth angle.
Azimuth: Acceleration	Second time derivative of the azimuth angle.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are
positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3 -D constraint force vector $\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.$, $\left.f c_{\mathrm{z}}\right]$ acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector $\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.$, $t c_{\mathrm{z}}$] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft .

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the $3-\mathrm{D}$ total torque vector $\left[t t_{\mathrm{x}}, t t_{\mathrm{y}}\right.$, $t t_{\mathrm{z}}$]. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B-Base frame
- F - Follower frame

Sensing Ports

The constant velocity joint primitive provides the following sensing ports:

- qb - Bend angle
- wb - First time-derivative of the bend angle
- bb - Second time-derivative of the bend angle
- qa - Azimuth angle
- wa - First time-derivative of the azimuth angle
- ba - Second time-derivative of the azimuth angle

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

See Also

Prismatic Joint | Spherical Joint

Cylindrical Joint

Joint with one prismatic and one revolute primitives possessing parallel motion axes

Library

Joints

Description

This block represents a joint with one translational and one rotational degree of freedom. One prismatic primitive provides the translational degree of freedom. One revolute primitive provides the rotational degree of freedom. The translation and rotation axes remain aligned during simulation.

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Rotation:

- About the Z axis of the Z Revolute Primitive (Rz) base frame.

2 Translation:

- Along the Z axis of the Z Prismatic Primitive (Pz) base frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

Dialog Box and Parameters

```
\ Cylindrical Joint: Cylindrical Joint
Description
Represents a cylindrical joint between two frames. This joint has one translational and one rotational degree of freedom represented by one revolute primitive and one prismatic primitive coincident along the same axis. This joint allows only rotation and prohibits relative translation in the base xy-plane. The follower frame first rotates about the base \(z\)-axis and then the follower origin translates along the base z -axis.
In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.
Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
= Z Revolute Primitive (Rz)
\(\pm\) State Targets
\# Internal Mechanics
\(\oplus\) Actuation
\(\pm\) Sensing
+ Z Prismatic Primitive ( \(\mathrm{P}_{\mathrm{z}}\) )
+ Composite Force/Torque Sensing

\section*{Revolute Primitive: State Targets}

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

\section*{Revolute Primitive: Internal Mechanics}

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

\section*{Spring Stiffness}

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is \(N * m / d e g\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N * m /(d e g / s)\).

\section*{Revolute Primitive: Actuation}

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

\section*{Torque}

Select an actuation torque setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline None & No actuation torque. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation torque from physical signal \\
input. The signal provides the torque \\
acting on the follower frame with \\
respect to the base frame about the joint \\
primitive axis. An equal and opposite \\
torque acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation torque from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation \\
torque based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Revolute Primitive: Sensing}

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Actuator Torque}

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

\section*{Prismatic Primitive: State Targets}

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is \(m\) for position and \(m / s\) for velocity.

\section*{Prismatic Primitive: Internal Mechanics}

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

\section*{Spring Stiffness}

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is \(\mathrm{N} / \mathrm{m}\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N /(\mathrm{m} / \mathrm{s})\).

\section*{Prismatic Primitive: Actuation}

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

\section*{Force}

Select an actuation force setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline None & No actuation force. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation force from physical signal \\
input. The signal provides the force \\
acting on the follower frame with \\
respect to the base frame along the joint \\
primitive axis. An equal and opposite \\
force acts on the base frame.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation force from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation force \\
based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Prismatic Primitive: Sensing}

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Actuator Force}

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fcx, \(f c_{\mathrm{y}}\), \(f c_{\mathrm{z}}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{\mathrm{z}}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3 -D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(t t_{\mathrm{z}}\) ]. Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The prismatic joint primitive provides the following actuation ports:
- fz - Actuation force acting on the Z prismatic joint primitive
- pz — Desired trajectory of the Z prismatic joint primitive

The revolute joint primitive provides the following actuation ports:
- tz - Actuation torque acting on the Z revolute joint primitive
- qz — Desired rotation of the Z revolute joint primitive

\section*{Sensing Ports}

The prismatic joint primitive provides the following sensing ports:
- pz - Position of the Z prismatic joint primitive
- vz - Velocity of the Z prismatic joint primitive
- az - Acceleration of the Z prismatic joint primitive
- fz - Actuation force acting on the Z prismatic joint primitive

The revolute joint primitive provides the following sensing ports:
- qz — Angular position of the Z revolute joint primitive
- wz - Angular velocity of the Z revolute joint primitive
- bz - Angular acceleration of the Z revolute joint primitive
- tz - Actuation torque acting on the Z revolute joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:
- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Prismatic Joint| Revolute Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"
- "Translational Measurements"

\section*{Distance Constraint}

Fixed distance between two frame origins

\section*{Library}

Constraints

\section*{Description}


This block applies a fixed distance between the origins of the base and follower port frames. The frames lose one translational degree of freedom with respect to each other. The constraint distance between the frame origins, labeled \(D\) in the figure, must be greater than zero.


The block provides constraint force sensing in the form of a vector or a signed magnitude. These quantities are contained in physical signals that the block outputs through Simscape PS ports. The constraint force is the force required to maintain the specified distance between the port frame origins.

\section*{Dialog Box and Parameters}


\section*{Distance}

Constraint distance between the base and follower frame origins. The distance must be greater than zero. For a distance of zero, use a Spherical Joint or Gimbal Joint block instead. The default value is 1 m .

\section*{Constraint Force Sensing}

Select whether to compute and output the distance constraint force vector and its signed magnitude. The distance constraint force is the force that the block must apply in order to maintain the distance you specify between the base and follower port frames.

\section*{Direction}

Constraint forces act in pairs. As expressed by Newton's third law of motion, if the base port frame exerts a constraint force on the follower port frame, then the follower
port frame must exert an equal and opposite force on the base port frame. Select which of the two constraint forces to sense:
- Follower on Base - Sense the constraint force that the follower port frame exerts on the base port frame.
- Base on Follower - Sense the constraint force that the base port frame exerts on the follower port frame.

\section*{Resolution Frame}

The block expresses the constraint force vector in terms of its Cartesian vector components. The splitting of a vector into vector components is known as vector resolution. The frame whose axes define the vector component directions is known as the resolution frame. Select whether to resolve the constraint force vector in the base or follower port frame.

\section*{Force Vector}

Compute and output the Cartesian components of the distance constraint force vector. The output signal is a three-dimensional vector, \(\left[f_{\mathrm{x}}, f_{\mathrm{y}}, f_{\mathrm{z}}\right]\).

\section*{Signed Force Magnitude}

Compute and output the magnitude of the distance constraint force, including its sign.

\section*{Ports}

The block provides two frame ports:
- B-Base frame port
- F - Follower frame port

In addition, the block provides two physical signal output ports:
- f - Distance constraint force vector
- fm - Signed magnitude of the distance constraint force

\section*{See Also}

Angle Constraint

\section*{Internal Force}

General force acting reciprocally between two frame origins

\section*{Library}

Forces and Torques

\section*{Description}


This block represents a general force pair acting reciprocally between base and follower frame origins. The two forces in the pair have equal magnitude but opposite directions. One force acts on the base frame origin, along the vector connecting follower to base frame origins. The other force acts on the follower frame origin, along the vector connecting base to follower frame origins.

To specify the internal force, the block provides physical signal port fm. A positive input signal represents a repulsive force, which pushes base and follower frame origins apart. A negative input signal represents an attractive force, which pulls base and follower frame origins together. If at any time the two frame origins are coincident, the internal force direction becomes undefined and Simscape Multibody might stop with an error.

\section*{Dialog Box and Parameters}
```

Internal Force : Internal Force \square
Description

```

Applies an internal force between the attached frames. The force is specified by the physical signal input and acts in equal magnitude and opposite directions at the two frames. The direction of the force is along the line connecting the origins of the base and follower frames.

Ports B and F represent the base and follower frames, respectively. The physical signal input port Fm can be used to input the time varying force magnitude.


\section*{Ports}

This block contains frame ports \(\mathbf{B}\) and \(\mathbf{F}\), representing base and follower port frames, respectively. A physical signal port, fm, provides the means to specify the internal force acting between the two port frames.

\section*{See Also}

External Force and Torque | Spring and Damper Force | Inverse Square Law Force

\section*{More About}
- "Actuating and Sensing Using Physical Signals"

\section*{External Force and Torque}

General force and torque arising outside the modeled system

\section*{Library}

Forces and Torques

\section*{Description}


This block represents a general force and torque that an external agency applies on a rigid body frame. The force and torque input can be constant or it can vary with time. The block provides a set of physical signal ports that you use to specify this input. The ports are hidden by default. Selecting an actuation mode exposes the corresponding physical signal port.

Each force and torque input acts on the origin of the follower frame in a direction that depends on the chosen force type and resolution frame. A force/torque vector component acts along/about the associated Cartesian axis, resolved in the chosen resolution frame. For example, the Force(X) input acts along the X axis of the resolution frame. A complete force/torque vector acts in the general direction that its components specify, resolved in the chosen resolution frame.

A force input with a positive value acts along the positive direction of the associated axis. A torque input with a positive value acts about the associated axis according to the righthand rule.

\section*{Dialog Box and Parameters}
```

External Force and Torque : External F... \square
Description
Applies an external force and torque at the attached frame.
The force and torque are specified by the physical signal
inputs.
Properties

- Actuation
 + Force
 + Torque

```

\section*{Actuation: Force}

Select the force inputs to specify and the frame to resolve them in.

\section*{Force Resolution Frame}

Select the frame to resolve each force signal in. The components of the force vector align with the axes of the resolution frame. The default setting is Attached Frame. The table summarizes the resolution frames that you can select.
\begin{tabular}{|l|l|}
\hline Resolution Frame & Description \\
\hline World & \begin{tabular}{l} 
Resolve each force component in the \\
World frame of the model.
\end{tabular} \\
\hline Attached Frame & \begin{tabular}{l} 
Resolve each force component in the \\
follower frame of the External Force and \\
Torque block. The follower frame is the \\
attached frame of the block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Force Inputs}

Select the force inputs to specify. Options include the complete force vector and the separate components of that vector. Selecting a force input exposes the physical signal port associated with that input. Use that port to specify the force input via physical signals. The table summarizes the force inputs that you can select.
\begin{tabular}{|l|ll|}
\hline Force Input & Description & \multicolumn{1}{|c|}{ Input } \\
\hline \begin{tabular}{l} 
Force(X), Force(Y), \\
Force(Z)
\end{tabular} & \begin{tabular}{l} 
Specify separately the \\
force components acting on \\
the origin of the follower \\
frame along the X, Y, and \\
Z axes of the resolution \\
frame
\end{tabular} & Scalar \\
\hline Force & \begin{tabular}{l} 
Specify the complete force \\
vector [fx fy fz] acting on \\
the origin of the follower \\
frame along the X, Y, and \\
Z axes of the resolution \\
frame
\end{tabular} & Three-element vector \\
\hline
\end{tabular}

\section*{Actuation: Torque}

Select the torque inputs to specify and the frame to resolve them in.

\section*{Torque Resolution Frame}

Select the frame to resolve each torque signal in. The components of the torque vector align with the axes of the resolution frame. The default setting is Attached Frame. The table summarizes the resolution frames that you can select.
\begin{tabular}{|l|l|}
\hline Resolution Frame & Description \\
\hline World & \begin{tabular}{l} 
Resolve each torque component in the \\
World frame of the model.
\end{tabular} \\
\hline Attached Frame & \begin{tabular}{l} 
Resolve each torque component in the \\
follower frame of the External Force and \\
Torque block. The follower frame is the \\
attached frame of the block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Torque Inputs}

Select the torque inputs to specify. Options include the complete torque vector and the separate components of that vector. Selecting a torque input exposes the physical signal port associated with that input. Use that port to specify the torque input via physical signals. The table summarizes the torque inputs that you can select.
\begin{tabular}{|l|l|l|}
\hline Force Input & Description & Input \\
\hline \begin{tabular}{l} 
Torque(X), Torque(Y), \\
Torque(Z)
\end{tabular} & \begin{tabular}{l} 
Specify separately the \\
torque components acting \\
on the origin of the \\
follower frame about the \\
X, Y, and Z axes of the \\
resolution frame
\end{tabular} & Scalar \\
\hline Torque & \begin{tabular}{l} 
Specify the complete \\
torque vector [fx fy fz] \\
acting on the origin of the \\
follower frame about a \\
general direction in the \\
resolution frame
\end{tabular} & Three-element vector \\
\hline
\end{tabular}

\section*{Ports}

The block contains frame port F, representing the follower frame. Selecting an actuation mode exposes additional physical signal ports. Use the ports to input the selected actuation signals.

Each physical signal port has a unique label. The table identifies the actuation modes that the port labels correspond to.
\begin{tabular}{|l|l|}
\hline Port Label & Description \\
\hline \(\mathrm{fx}, \mathrm{fy}, \mathrm{fz}\) & \begin{tabular}{l} 
Force vector components acting on the \\
origin of the follower frame along the X, Y, \\
and Z axes, respectively
\end{tabular} \\
\hline f & \begin{tabular}{l} 
Force vector [fx, fy, fz] acting on the origin \\
of the follower frame along a general \\
direction [X Y Z]
\end{tabular} \\
\hline \(\mathrm{tx}, \mathrm{ty}, \mathrm{tz}\) & \begin{tabular}{l} 
Torque vector components acting on the \\
origin of the follower frame about the X, Y, \\
and Z axes, respectively
\end{tabular} \\
\hline t & \begin{tabular}{l} 
Torque vector [tx ty tz] acting on the origin \\
of the follower frame about a general \\
direction [X Y Z]
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also \\ Inverse Square Law Force | Spring and Damper Force | Internal Force}

\section*{More About}
- "Actuating and Sensing Using Physical Signals"

\section*{Gimbal Joint}

Joint with three revolute primitives

\section*{Library}

\author{
Joints
}

\section*{Description}


This block represents a joint with three rotational degrees of freedom. Three revolute primitives provide the three rotational degrees of freedom. The base and follower frame origins remain coincident during simulation.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

\section*{1 Rotation:}
a About the X axis of the X Revolute Primitive ( Rx ) base frame.
b About the Y axis of the Y Revolute Primitive (Ry) base frame. This frame is coincident with the X Revolute Primitive ( Rx ) follower frame.
c About the Z axis of the Z Revolute Primitive (Rz) base frame. This frame is coincident with the Y Revolute Primitive (Ry) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation. Because 3-D rotation occurs as a sequence, it is possible for two axes to align, causing to the loss of one rotational degree of freedom. This phenomenon is known as gimbal lock.


\section*{Joint Transformation Sequence}

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}

\section*{Gimbal Joint : Gimbal Joint}
\(\square\)
Description
Represents a gimbal joint between two frames. This joint has three rotational degrees of freedom represented by three revolute primitives. This joint allows unconstrained 3-D rotation, provided that the three primitive axes remain mutually unaligned. It constrains the origins of the two frames to be coincident. The follower frame rotates around the follower \(x\)-axis, \(y\)-axis, and \(z\)-axis, in that order.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.

Properties
- X Revolute Primitive (Rx)
\(\pm\) State Targets
\(\pm\) Internal Mechanics
\(\pm\) Actuation
\# Sensing
+ Y Revolute Primitive (Ry)
† Z Revolute Primitive ( Rz )
+ Composite Force/Torque Sensing


\section*{Revolute Primitive: State Targets}

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

\section*{Revolute Primitive: Internal Mechanics}

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

\section*{Spring Stiffness}

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is \(N * m / d e g\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N * m /(d e g / s)\).

\section*{Revolute Primitive: Actuation}

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

\section*{Torque}

Select an actuation torque setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline None & No actuation torque. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation torque from physical signal \\
input. The signal provides the torque \\
acting on the follower frame with \\
respect to the base frame about the joint \\
primitive axis. An equal and opposite \\
torque acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation torque from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation \\
torque based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Revolute Primitive: Sensing}

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Actuator Torque}

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint
force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector \(\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.\), \(f c_{z}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{z}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft.

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(\left.t t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The revolute joint primitives provide the following actuation ports:
- tx, ty, tz - Actuation torques acting on the \(\mathrm{X}, \mathrm{Y}\), and Z revolute joint primitives
- qx, qy, qz - Desired rotations of the X, Y, and Z revolute joint primitives

\section*{Sensing Ports}

The revolute joint primitives provide the following sensing ports:
- qx, qy, qz - Angular positions of the X, Y, and Z revolute joint primitives
- wx, wy, wz - Angular velocities of the X, Y, and Z revolute joint primitives
- bx, by, bz - Angular accelerations of the X, Y, and Z revolute joint primitives
- tx, ty, tz - Actuation torques acting on the X, Y, and Z revolute joint primitives

The following sensing ports provide the composite forces and torques acting on the joint:
- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Revolute Joint| Spherical Joint | Bushing Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"

\section*{Graphic}

Visual marker with graphic properties

\section*{Library}

Body Elements

\section*{Description}


This block represents a simple 3-D marker with shape, color, and opacity. Shapes include sphere, cube, and frame. A color palette provides a selection of predefined colors. The marker has no inertial properties and therefore does not affect model dynamics. The figure shows the different markers that you can select.


\section*{Dialog Box and Parameters}
\begin{tabular}{l}
\hline Graphic: Graphic \\
\begin{tabular}{l} 
Description \\
Represents parameterized graphic elements that can be \\
added to a mechanical model. \\
In the expandable nodes under Properties, select the type of \\
graphic marker that you want and enter its visual properties. \\
Port R is a frame port that represents the reference frame \\
used to define the geometric origin and orientation of the \\
marker. There is no inertia associated with this graphic \\
marker. \\
Properties \\
\begin{tabular}{|l|l|}
\hline Shape
\end{tabular} \\
\hline Size (pixels) \\
\hline\(\square\) Visual Properties \\
\hline \begin{tabular}{ll|l|} 
Color
\end{tabular} \\
\hline Opacity \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Shape}

Geometric shape of the graphic marker. Options include Cube, Frame, and Sphere. The default setting is Sphere.

\section*{Size}

Absolute size of the graphic marker in pixels. Changing the zoom level in the model visualization pane has no effect on the apparent marker size. The default value is 10 .

\section*{Visual Properties}

Color specification type. Options include Simple and Advanced. Select Simple to specify only the base color and opacity of your shape. Select Advanced to add lighting effects such as specular reflections and light emission.

\section*{Simple: Color}
[R G B] color vector. This vector contains the red (R), green (G), and blue (B) contents of the specified color on a scale of \(0-1\). The default vector is [0.5 0.5 0.5]. A color picker provides an alternative means of specifying color.

\section*{Simple: Opacity}

Degree to which your shape obscures model components positioned behind it. The opacity value can range from 0 to 1 . An opacity of 0 makes the shape completely translucent, while an opacity of 1 makes it completely opaque. The default value is 1.0 .

\section*{Advanced: Diffuse Color}
[R G B] or [R G B A] diffuse color vector. The diffuse color is the apparent color of the specified shape under direct white light. The color vector contains the red (R), green (G), and blue (B) contents of the diffuse color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is [0.5 0.5 0.5].

\section*{Advanced: Specular Color}
[R G B] or [R G B A] specular color vector. The specular color is the color of the glossy highlights on the periphery of the specified shape. The color vector contains the red \((\mathrm{R})\), green (G), and blue (B) contents of the specular color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is [0.5 0.50 .51 .0\(].\)

\section*{Advanced: Ambient Color}
[R G B] or [R G B A] ambient color vector. The ambient color is the apparent color of the specified shape under indirect ambient light. The color vector contains the red \((R)\), green (G), and blue (B) contents of the ambient color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is [0.15 0.150 .151 .0 ].

\section*{Advanced: Emissive Color}
[R G B] or [R G B A] emissive color vector. The emissive color is the color of light the specified shape generates. The sun is an example of a body with emissive color. The color vector contains the red (R), green (G), and blue (B) contents of the emissive color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is \(\left[\begin{array}{lll}0.0 & 0.0 & 0.0 \\ 1.0\end{array}\right]\).

\section*{Advanced: Shininess}

Sharpness of the specular highlights on the periphery of the specified shape. The shininess value can range from 0 to 128 . A low shininess value produces large specular highlights with a gradual falloff in intensity. A large shininess value produces small specular highlights with a sharp falloff in intensity. The default value is 75 .

\section*{Ports}

This block contains frame port R , representing the graphic reference frame.

\section*{See Also}

Inertia|Solid

\section*{Gravitational Field}

\author{
Field of force due to point mass
}

\section*{Library}

Forces and Torques

\section*{Description}

This block represents the gravitational field of a point mass. This field applies a gravitational force at the center of mass of each rigid body. The force magnitude decays with the square distance from the field origin, coincident with the base port frame origin. The force on a rigid body follows from Newton's universal gravitation law:
\[
F_{g}=-G \frac{M m}{R_{B F}^{2}}
\]
where:
- \(F_{\mathrm{g}}\) is the force that the gravitational field exerts on a given rigid body.
- \(G\) is the universal gravitational constant, \(6.67384 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\).
- \(M\) is the total mass generating the gravitational field.
- \(m\) is the total mass of the rigid body the gravitational force acts upon.
- \(R_{\mathrm{BF}}\) is the distance between the source mass position and the rigid body center of mass.

The figure shows these variables. The plot shows the inverse square dependence between the gravitational force and distance.



The source mass can be positive or negative. Combine multiple instances of this block to model the gravitational effects that positive and negative mass disturbances impose on a stronger gravitational field, such as a reduction in the gravitational pull of a planet due to a concentration of low-density material along a portion of its surface.

This block excludes the gravitational forces that other rigid bodies exert on the field source mass. To include these forces, you can connect Gravitational Field blocks to other rigid bodies in the model. Alternatively, you can use the Inverse Square Law Force block to model the gravitational forces between a single pair of rigid bodies.

The gravitational field is time invariant. To specify a time-varying, spatially uniform field, use the Mechanism Configuration block.

\section*{Dialog Box and Parameters}
ZA Gravitational Field : Gravitational Field
Description
Creates a gravitational field centered about the attached
frame. The field is equivalent to that of a point mass placed
at the origin of the attached frame (inverse square law).
Every rigid component (with mass) that is part of the same
mechanism, except the one to which this block is attached,
experiences a force at its center of mass due to the
gravitational field.
Port F is a frame port and the gravitational field is centered
at the origin of the frame to which this port is connected.
Properties - 1.0
\begin{tabular}{|l|l|}
\hline Mass & Help \\
\hline
\end{tabular}

\section*{Mass}

Total mass generating the gravitational field. The resulting gravitational forces are directly proportional to this mass. This mass adds no inertia to the model. The default value for the mass parameter is 1.0 kg .

\section*{Ports}

Frame port B represents a frame with origin at the point mass responsible for the gravitational field.

\author{
See Also \\ Inverse Square Law Force | Mechanism Configuration
}

\section*{Related Examples}
- "Model Planetary Orbit Due to Gravity"

\section*{Inertia}

Inertial properties of a solid or mass disturbance

\section*{Library}

Body Elements

\section*{Description}


This block represents the inertial properties of a solid. The solid can be a point mass or a 3-D mass distribution. To represent the inertial properties of a point mass, the dialog box provides a Point Mass parameterization. Inertial parameters of a point mass include only the total mass of the solid. To represent the inertial properties of a 3-D mass distribution, the dialog box provides a Custom parameterization. Inertial parameters of a custom inertia include the total mass of the solid, its center of mass, as well as its moments and products of inertia.

This block can also represent a mass disturbance in a model. The disturbance can have positive or negative inertia. A disturbance with negative inertia reduces the total inertia of the rigid body the block connects to. A disturbance with positive inertia increases the total inertia of the rigid body the block connects to. Use this block to adjust the total inertia of a rigid body.

The visualization pane of Mechanics Explorer identifies the position of an Inertia element with the inertia icon \(\square\).

\section*{Dialog Box and Parameters}
```

1 Inertia: Inertia
\square回 x
Description
Adds inertia and mass to a mechanical model by specifying total mass, location of the center of mass, moments of inertia, and products of inertia. If the third and fourth are zero, the inertia represents a translated point mass. If the second is also zero, the inertia represents a point mass at the origin. Point Mass inertia represents a mass concentrated at a single point. Custom inertia represents a general mass distribution relative to a reference frame.
In the expandable nodes under Properties, select the type of inertia that you want and enter its mass properties.
Port R is a frame port that represents the reference frame used to locate the point mass or define the extended mass distribution geometry.
Properties

Type	Point Mass	-
Mass	1	kg

```

\section*{Type}

Select a method to specify inertia. The default is Point Mass.
\begin{tabular}{|l|l|}
\hline Type & Description \\
\hline Point Mass & \begin{tabular}{l} 
Treat the inertia as a mass with zero \\
volume. The point mass is located at the \\
reference frame origin.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Type & Description \\
\hline Custom & \begin{tabular}{l} 
Manually specify all inertial parameters, \\
including mass, center of mass, and \\
moments and products of inertia.
\end{tabular} \\
\hline
\end{tabular}

\section*{Point Mass/Custom: Mass}

Enter the total mass of the solid. Select a physical unit. The default is 1 Kg .

\section*{Custom: Center of Mass}

Enter the center of mass coordinates with respect to the solid reference frame in the order [X Y Z]. In a uniform gravitational field, the center of mass coincides with the center of gravity. Select a physical unit. The default is [ \(\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]\).

\section*{Custom: Moments of Inertia}

Enter the mass moments of inertia of the solid element in the order \(\left[\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\mathrm{yy}}, \mathrm{I}_{\mathrm{zz}}\right]\). Each moment of inertia must refer to a frame whose axes are parallel to the block reference frame axes and whose origin is coincident with the solid center of mass. The moments of inertia are the diagonal elements of the solid inertia tensor,
\[
\left(\begin{array}{lll}
I_{x x} & & \\
& I_{y y} & \\
& & I_{z z}
\end{array}\right),
\]
where:
\[
\begin{aligned}
& I_{x x}=\int_{V}\left(y^{2}+z^{2}\right) d m \\
& I_{y y}=\int_{V}\left(x^{2}+z^{2}\right) d m \\
& I_{z z}=\int_{V}\left(x^{2}+y^{2}\right) d m
\end{aligned}
\]

Select a physical unit. The default is [ \(\left.\begin{array}{lll}1 & 1 & 1\end{array}\right] \mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Custom: Products of Inertia}

Enter the mass products of inertia of the solid element in the order \(\left[I_{y z}, I_{z x}, I_{x y}\right]\). Each product of inertia must refer to a frame whose axes are parallel to the block reference frame axes and whose origin is coincident with the solid center of mass. The products of inertia are the off-diagonal elements of the solid inertia tensor,
\[
\left(\begin{array}{lll} 
& I_{x y} & I_{z x} \\
I_{x y} & & I_{y z} \\
I_{z x} & I_{y z} &
\end{array}\right),
\]
where:
\(I_{y z}=-\int_{V} y z d m\)
- \(I_{z x}=-\int_{V} z x d m\)
\[
I_{x y}=-\int_{V} x y d m
\]

Select a physical unit. The default is \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \mathrm{kg} \mathrm{m}^{\wedge} 2\).

\section*{Ports}

This block contains frame port R , representing the inertia reference frame.

\section*{See Also}

Graphic | Solid

\section*{More About}
- "Solid Inertia"

\section*{Inverse Square Law Force}

Force proportional to the inverse square distance between two frame origins

\section*{Library}

Forces and Torques

\section*{Description}


This block represents a force pair that is inversely proportional to the square distance between the base and follower frame origins. The two forces in the pair have equal magnitude but opposite directions. One force acts on the base frame origin, along the vector connecting the follower to base frame origins. The other force acts on the follower frame origin, along the vector connecting base to follower frame origins.

The value of the force depends on a force constant that you specify. A positive force constant represents a repulsive force that pushes the two frame origins apart. A negative force constant represents an attractive force that pulls the two frame origins together.

\section*{Dialog Box and Parameters}


\section*{Force Constant}

Specify the proportionality constant of the inverse square law force. This constant is a lumped parameter that encodes the dependence of the force magnitude on the inverse square distance between the two frame origins. The default value is 1 . Select or specify a physical unit.

\section*{Sense Force}

Select the check box to sense the signed magnitude of the inverse square law force acting between the two frame origins. The block exposes an additional physical signal
port to output the force signal. The output signal is a scalar value. This value is positive if the force is repulsive; it is negative if the force is attractive.

\section*{Ports}

The block contains frame ports B and F, representing base and follower frames, respectively.

Selecting Sense Force in the block dialog box exposes an additional physical signal port, fm.

\section*{See Also}

External Force and Torque | Internal Force | Spring and Damper Force

\section*{More About}
- "Actuating and Sensing Using Physical Signals"

\section*{Lead Screw Joint}

Joint with coupled rotational and translational degrees of freedom

\section*{Library}

Joints

\section*{Description}


This block represents a joint with one rotational degree of freedom coupled with one translational degree of freedom. The coupling between the two degrees of freedom ensures that whenever the joint frames rotate relative to each other, they also translate by a commensurate amount and vice-versa. The joint lead determines the translation distance associated with a unit rotation angle while the joint direction determines whether a positive angle results in a positive or negative translation.

During assembly and simulation, the joint aligns the Z axes of its port frames. The common Z axis functions as the rotation and translation axis. Whenever the joint frames rotate, they do so about the common Z axis, and whenever the joint frames translate, they do so along the common Z axis. You can orient the motion axis in a different direction by applying rotation transforms to the joint frames through Rigid Transform blocks.


\section*{Joint Degrees of Freedom}

A set of optional state targets guide assembly for the joint primitive. Targets include position and velocity. You can specify these based on the relative rotation or translation
between the joint frames. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Each joint primitive has a set of optional sensing ports. These ports provide physical signal outputs that measure joint primitive motion. Variables that you can sense include those describing translational motion, rotational motion, and constraint forces and torques.

\section*{Dialog Box and Parameters}
\[
\begin{aligned}
& \text { Lead Screw Joint : Lead Screw Joint } \\
& \text { Description } \\
& \text { Represents a lead screw joint between two frames. This joint } \\
& \text { has one degree of freedom represented by one lead screw } \\
& \text { primitive. This joint constrains the } z \text {-axes of the base and } \\
& \text { follower frames to be aligned. The follower frame origin can } \\
& \text { translate along the base } z \text {-axis whilst the follower } x \text {-axis and } \\
& y \text {-axis rotate about the base frame } z \text {-axis. The translation and } \\
& \text { rotation are coupled by a lead screw constraint determined } \\
& \text { by the direction and lead parameters. }
\end{aligned}
\]

In the expandable nodes under Properties, specify the state and sensing capabilities of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
- Z Lead Screw Primitive (LSz)
\begin{tabular}{|l|l|l|}
\hline Direction & \multicolumn{2}{|l|}{ Right-Hand } \\
\hline Lead & 1.0 & \(\mathrm{~mm} / \mathrm{rev}\) \\
\hline\(\pm\) State Targets & & \\
\hline\(\pm\) Sensing & \\
\hline Composite Force/Torque Sensing & \\
\hline & \\
& \\
\hline
\end{tabular}

\section*{Lead Screw Primitive}

\section*{Direction}

Handedness of motion between the joint frames. Motion is right-handed if a positive rotation leads to a positive translation and left-handed if a positive rotation leads to a negative translation. The default setting is Right-Hand.

\section*{Lead}

Translation distance between the joint frames due to a unit rotation angle. The larger the lead, the longer the frames must translate before completing a full revolution. The default value is \(1.0 \mathrm{~mm} / \mathrm{rev}\).

\section*{Lead Screw Primitive: State Targets}

Specify the lead screw primitive state targets and their priority levels. A state target is the desired value for one of the joint state variables-position or velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be satisfied.

\section*{Specify Position Target}

Desired joint primitive position at the start of simulation. This is the relative position, rotational or translational, of the follower frame relative to the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Desired joint velocity at the start of simulation. This is the relative velocity, rotational or translational, of the follower frame relative to the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Low-priority targets behave as rough guides.

\section*{Based On}

Motion type that the state target is based on. Options include Rotation and Translation. The default setting is Translation.

\section*{Value}

Desired value of the position or velocity state target. The default value is 0 .

\section*{Lead Screw Primitive: Sensing}

Select the variables to sense in the lead screw primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame.
\begin{tabular}{|l|l|}
\hline Variable & Description \\
\hline Rotation: Position & \begin{tabular}{l} 
Rotation angle of the follower frame \\
relative to the base frame about the \\
common Z axis. Selecting the check box \\
exposes a physical signal port labeled q.
\end{tabular} \\
\hline Rotation: Velocity & \begin{tabular}{l} 
Rotational velocity of the follower frame \\
relative to the base frame about the \\
common Z axis. Selecting the check box \\
exposes a physical signal port labeled w.
\end{tabular} \\
\hline Rotation: Acceleration & \begin{tabular}{l} 
Rotational acceleration of the follower \\
frame relative to the base frame about the \\
common Z axis. Selecting the check box \\
exposes a physical signal port labeled b.
\end{tabular} \\
\hline Translation: Position & \begin{tabular}{l} 
Offset distance of the follower frame \\
relative to the base frame along the \\
common Z axis. Selecting the check box \\
exposes a physical signal port labeled p.
\end{tabular} \\
\hline Translation: Velocity & \begin{tabular}{l} 
Translational velocity of the follower \\
frame relative to the base frame along the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Variable & Description \\
\hline & \begin{tabular}{l} 
lommon Z axis. Selecting the check box \\
exposes a physical signal port labeled v.
\end{tabular} \\
\hline Translation: Acceleration & \begin{tabular}{l} 
Translational acceleration of the follower \\
frame relative to the base frame along the \\
common Z axis. Selecting the check box \\
exposes a physical signal port labeled a.
\end{tabular} \\
\hline
\end{tabular}

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fc \(c_{\mathrm{x}}, f c_{\mathrm{y}}\), \(f c_{\mathrm{z}}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector [ \(t c_{\mathrm{x}}, t c_{\mathrm{y}}\), \(t c_{\mathrm{z}}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [ttx, \(t t_{\mathrm{y}}\), \(t t_{\mathrm{z}}\) ]. Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Sensing Ports}

The lead screw joint primitive provides the following sensing ports:
- q-Angular position
- w - Angular velocity
- b-Angular acceleration
- p-Linear position
- v-Linear velocity
- a - Linear acceleration

The following sensing ports provide the composite forces and torques acting on the joint:
- fc-Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Prismatic Joint | Revolute Joint

\section*{Mechanism Configuration}

Mechanism-wide simulation and mechanical parameters

\section*{Library}

Utilities

\section*{Description}

This block provides mechanical and simulation parameters to a mechanism, i.e., a selfcontained group of interconnected Simscape Multibody blocks. Parameters include gravity and a linearization delta for computing numerical partial derivatives during linearization. These parameters apply only to the target mechanism, i.e., the mechanism that the block connects to.

The Mechanism Configuration block is optional. If you omit it, the gravitational acceleration vector is set to zero. Use only one instance of this block per mechanism, setting uniform gravity to None if that mechanism contains one or more Gravitational Field blocks.

\section*{Dialog Box and Parameters}
\begin{tabular}{l} 
Mechanism Configuration : Mechanis... \\
Description - \\
Sets mechanical and simulation parameters that apply to an \\
entire machine, the target machine to which the block is \\
connected. In the Properties section below, you can specify \\
uniform gravity for the entire mechanism and also set the \\
linearization delta. The linearization delta specifies the \\
perturbation value that is used to compute numerical partial \\
derivatives for linearization. \\
Port C is frame node that you connect to the target machine \\
by a connection line at any frame node of the machine. \\
Properties \\
\begin{tabular}{|l|l|l|}
\hline\(\square\) Uniform Gravity & Constant \\
[00-9.80665] & \(\mathrm{m} / \mathrm{s}^{\wedge} 2\)
\end{tabular} \\
\hline Lineavity \\
\hline 0.001
\end{tabular}

\section*{Uniform Gravity}

Type of gravitational acceleration vector in effect at the target mechanism. Options include:
- None - Specify zero gravity. The block automatically applies the gravitational acceleration vector \(\left[\begin{array}{lll}0 & 0\end{array}\right]\) to the target mechanism. If the mechanism contains one or more Gravitational Field blocks, you must select this option.
- Constant - Specify a gravitational acceleration vector that remains constant in space and in time. Selecting this option exposes an additional parameter, Gravity. If the target mechanism contains one or more Gravitational Field blocks, you must select None instead.
- Time-Varying - Specify a gravitational acceleration vector that remains constant in space but varies in time. Selecting this option exposes a physical
signal port. Use that port to specify the time-varying gravitational acceleration vector. If the target mechanism contains one or more Gravitational Field blocks, you must select None instead.

\section*{Gravity}

Nominal acceleration vector due to gravity. The block resolves this vector in the mechanism World frame. The default vector is [ \(00-9.80665\) ] m/s^2.

\section*{Linearization Delta}

Perturbation value for computing numerical partial derivatives during linearization. The default value is 0.001 .

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l} 
Frame port that identifies the target \\
mechanism to which the block parameters \\
apply.
\end{tabular} \\
\hline g & \begin{tabular}{l} 
Physical signal port through which you \\
specify a time-varying gravity vector.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

Gravitational Field

\section*{Pin Slot Joint}

Joint with one prismatic and one revolute primitives possessing mutually orthogonal motion axes

\section*{Library}

Joints

\section*{Description}


This block represents a joint with one translational and one rotational degrees of freedom. One prismatic primitive provides the translational degree of freedom. One revolute primitive provides the rotational degree of freedom. Prismatic and revolute axes are mutually orthogonal.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

\section*{1 Translation:}
- Along the X axis of the X Prismatic Primitive ( Px ) base frame.

2 Rotation:
- About the Z axis of the Z Revolute Primitive (Rz) base frame. This frame is coincident with the X Prismatic Primitive ( Px ) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation.


\section*{Joint Transformation Sequence}

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}
\$ Pin Slot Joint: Pin Slot Joint
Description
Represents a pin-slot joint between two frames. This joint has one translational and one rotational degree of freedom represented by one prismatic primitive and one revolute primitive respectively. The follower frame first translates along the base x -axis while the base and follower axes remain aligned. It then rotates about the common z -axis.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
= X Prismatic Primitive ( Px )
\(\pm\) State Targets
\(\pm\) Internal Mechanics
\(\pm\) Actuation
\(\pm\) Sensing
+ Z Revolute Primitive (Rz)
+ Composite Force/Torque Sensing

\section*{Prismatic Primitive: State Targets}

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is \(m\) for position and \(m / s\) for velocity.

\section*{Prismatic Primitive: Internal Mechanics}

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

\section*{Spring Stiffness}

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is \(\mathrm{N} / \mathrm{m}\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(\mathrm{N} /(\mathrm{m} / \mathrm{s})\).

\section*{Prismatic Primitive: Actuation}

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

\section*{Force}

Select an actuation force setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline None & No actuation force. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation force from physical signal \\
input. The signal provides the force \\
acting on the follower frame with \\
respect to the base frame along the joint \\
primitive axis. An equal and opposite \\
force acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation force from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation force \\
based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Prismatic Primitive: Sensing}

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Actuator Force}

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

\section*{Revolute Primitive: State Targets}

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

\section*{Revolute Primitive: Internal Mechanics}

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

\section*{Spring Stiffness}

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is \(N * m / d e g\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N * m /(\mathrm{deg} / \mathrm{s})\).

\section*{Revolute Primitive: Actuation}

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

\section*{Torque}

Select an actuation torque setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline None & No actuation torque. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation torque from physical signal \\
input. The signal provides the torque \\
acting on the follower frame with \\
respect to the base frame about the joint \\
primitive axis. An equal and opposite \\
torque acts on the base frame.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation torque from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation \\
torque based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Revolute Primitive: Sensing}

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Actuator Torque}

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fcx, \(f c_{\mathrm{y}}\), \(\left.f c_{\mathrm{z}}\right]\) acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{\mathrm{z}}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3 -D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(t t_{\mathrm{z}}\) ]. Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The prismatic joint primitive provides the following actuation ports:
- fx - Actuation force acting on the X prismatic joint primitive
- px - Desired trajectory of the X prismatic joint primitive

The revolute joint primitive provides the following actuation ports:
- tz - Actuation torque acting on the Z revolute joint primitive
- qz - Desired rotation of the Z revolute joint primitive

\section*{Sensing Ports}

The prismatic joint primitive provides the following sensing ports:
- px - Position of the X prismatic joint primitive
- \(v x\) - Velocity of the X prismatic joint primitive
- ax - Acceleration of the X prismatic joint primitive
- fx - Actuation force acting on the X prismatic joint primitive

The revolute joint primitive provides the following sensing ports:
- qz - Angular position of the Z revolute joint primitive
- wz - Angular velocity of the Z revolute joint primitive
- bz - Angular acceleration of the Z revolute joint primitive
- tz - Actuation torque acting on the Z revolute joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:
- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Cylindrical Joint | Revolute joint | Prismatic Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"
- "Translational Measurements"

\section*{Planar Joint}

Joint with one revolute and two prismatic primitives

\section*{Library}

Joints

\section*{Description}


This block represents a joint with one rotational and two translational degrees of freedom. Two prismatic primitives provide the two translational degrees of freedom. One revolute primitive provides the rotational degree of freedom.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

\section*{1 Translation:}
a Along the X axis of the X Prismatic Primitive ( Px ) base frame.
b Along the Y axis of the Y Prismatic Primitive (Py) base frame. This frame is coincident with the X Prismatic Primitive (Px) follower frame.

\section*{2 Rotation:}
- About the Z axis of the Z Revolute Primitive (Rz) base frame. This frame is coincident with the Y Prismatic Primitive (Py) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation.


Joint Transformation Sequence
A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}

\section*{Planar Joint: Planar Joint}
\(\square\)
Description
Represents a planar joint between two frames. This joint has two translational and one rotational degrees of freedom represented by two prismatic primitives and one revolute primitive along a set of three mutually orthogonal axes. This joint constrains the \(z\)-axes of the base and follower frames to be aligned and prohibits relative translation along that axis. It allows translation of the follower origin in the base xy -plane and rotation of the follower frame around its z -axis.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
```

Properties
= X Prismatic Primitive (Px)
\# State Targets
\# Internal Mechanics
\# Actuation
\# Sensing
I Y Prismatic Primitive (Py)

Z Revolute Primitive (Rz)

+ Composite Force/Torque Sensing

```

\section*{Prismatic Primitive: State Targets}

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and \(\mathrm{m} / \mathrm{s}\) for velocity.

\section*{Prismatic Primitive: Internal Mechanics}

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

\section*{Spring Stiffness}

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is \(\mathrm{N} / \mathrm{m}\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N /(\mathrm{m} / \mathrm{s})\).

\section*{Prismatic Primitive: Actuation}

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

\section*{Force}

Select an actuation force setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline None & No actuation force. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation force from physical signal \\
input. The signal provides the force \\
acting on the follower frame with \\
respect to the base frame along the joint \\
primitive axis. An equal and opposite \\
force acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation force from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation force \\
based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Prismatic Primitive: Sensing}

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Actuator Force}

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

\section*{Revolute Primitive: State Targets}

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

\section*{Revolute Primitive: Internal Mechanics}

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

\section*{Spring Stiffness}

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is \(N * m / d e g\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N * m /(d e g / s)\).

\section*{Revolute Primitive: Actuation}

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

\section*{Torque}

Select an actuation torque setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline None & No actuation torque. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation torque from physical signal \\
input. The signal provides the torque \\
acting on the follower frame with \\
respect to the base frame about the joint \\
primitive axis. An equal and opposite \\
torque acts on the base frame.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation torque from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation \\
torque based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Revolute Primitive: Sensing}

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Actuator Torque}

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fcx, \(f c_{\mathrm{y}}\), \(f c_{z}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{\mathrm{z}}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(\left.t t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The prismatic joint primitives provide the following actuation ports:
- fx, fy - Actuation forces acting on the X and Y prismatic joint primitives
- px, py — Desired trajectories of the X and Y prismatic joint primitives

The revolute joint primitive provides the following actuation ports:
- tz - Actuation torque acting on the Z revolute joint primitive
- qz - Desired rotation of the Z revolute joint primitive

\section*{Sensing Ports}

The prismatic joint primitives provide the following sensing ports:
- px, py — Positions of the \(X\) and \(Y\) prismatic joint primitives
- vx, vy - Velocities of the X and Y prismatic joint primitives
- ax, ay - Accelerations of the X and Y prismatic joint primitives
- fx, fy - Actuator forces acting on the \(X\) and \(Y\) prismatic joint primitives

The revolute joint primitive provides the following sensing ports:
- qz - Angular position of the Z revolute joint primitive
- wz - Angular velocity of the Z revolute joint primitive
- bz - Angular acceleration of the Z revolute joint primitive
- tz - Actuation torque acting on the Z revolute joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:
- fc-Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Rectangular Joint | Prismatic Joint | Revolute Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"
- "Translational Measurements"

\section*{Point On Curve Constraint}

Kinematic constraint between a frame origin and a curved path

\section*{Library}

Constraints

\section*{Description}


This block represents a kinematic constraint between a point and a curve. The constraint allows the follower frame origin to translate only along the curve connected to the base geometry port. The follower frame is free to rotate depending on other constraints in the model. Use this block to model point-on-curve constraints, such as that between a roller coaster and a track or a cam follower and a cam.


Roller Coaster


Cam

\section*{Examples of Point-on-Curve Constraints}

Specify the constraint curve by connecting a curve block to the base geometry port. As a best practice, always use the curve block as part of a rigid body, for example, by keeping it inside a rigid body subsystem. This enables you to quickly switch, for example, between
different cams or roller coaster tracks．Avoid curves with sharp changes in slope，as these can cause simulation issues．

\section*{Dialog Box and Parameters}
```

Point On Curve Constraint : Point on ... 口 回汉

```

Description
Constrains the follower frame origin to the curve specified at geometry port \(B\) ．The follower frame remains free to rotate， subject to the constraints imposed by the remainder of the model．The curve definition is external to this block and comes from the block connected to port \(B\) ．

Port B is a geometry port that represents the curve along which the follower frame origin is to move．Port F is a frame port that represents the follower frame．

Properties
－Constraint Force Sensing
\begin{tabular}{|l|l|l|}
\hline Direction & Follower on Base \\
\hline Resolution Frame & Base \\
\hline Force Vector & \(\square\) & \\
\hline & \\
& & \\
& & OK Cancel \\
& Help & Apply \\
\hline
\end{tabular}

\section*{Constraint Force Sensing}

\section*{Direction}

Select the force in the constraint action－reaction force pair to sense．You can sense the force that the follower frame exerts on the base curve or vice－versa．The default setting is Follower on Base．

\section*{Resolution Frame}

Select the frame to resolve the constraint force measurement in. You can select the base or follower frame. The default setting is Base.

\section*{Force Vector}

Select the check box to sense the constraint force. The block exposes physical signal output port f, which outputs the force measurement as a three-dimensional vector, \(\left[F_{\mathrm{x}}, F_{\mathrm{y}}, F_{\mathrm{z}}\right]\).

\section*{Ports}

The block contains two ports:
- B-Base geometry port representing the constraint curve
- F - Follower frame port representing the constrained point

An optional port appears when you select constraint force sensing:
- f - Physical signal with the constraint force components \(\left[F_{\mathrm{x}}, F_{\mathrm{y}}, F_{\mathrm{z}}\right]\)

\author{
See Also \\ Spline | Angle Constraint | Distance Constraint
}

\section*{Prismatic Joint}

Joint with one prismatic primitive

\section*{Library}

Joints

\section*{Description}


This block represents a joint with one translational degree of freedom. One prismatic primitive provides the translational degree of freedom. The base and follower frames remain parallel during simulation.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a single timevarying transformation. The Z prismatic primitive ( Pz ) applies this transformation, which causes the follower frame to translate with respect to the base frame along the common Z axis.


\section*{Joint Transformation}

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}
```

Prismatic Joint: Prismatic Joint
\square\square回 x
Description
Represents a prismatic joint between two frames. This joint
has one translational degree of freedom represented by one
prismatic primitive. The joint constrains the follower origin
to translate along the base z-axis, while the base and
follower axes remain aligned.
In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.
Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties

- Z Prismatic Primitive (P_{z})
\# State Targets
\oplus Internal Mechanics
\pm Actuation
\pm Sensing
+ Composite Force/Torque Sensing

```

\section*{Prismatic Primitive: State Targets}

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The
priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is \(m\) for position and \(m / s\) for velocity.

\section*{Prismatic Primitive: Internal Mechanics}

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy
dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

\section*{Spring Stiffness}

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is \(\mathrm{N} / \mathrm{m}\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N /(\mathrm{m} / \mathrm{s})\).

\section*{Prismatic Primitive: Actuation}

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

\section*{Force}

Select an actuation force setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline None & No actuation force. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation force from physical signal \\
input. The signal provides the force \\
acting on the follower frame with \\
respect to the base frame along the joint \\
primitive axis. An equal and opposite \\
force acts on the base frame.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation force from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation force \\
based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Prismatic Primitive: Sensing}

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Actuator Force}

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3 -D constraint force vector \(\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.\), \(f c_{\mathrm{z}}\) ] acting at the joint. Only constraint force components that are orthogonal to the
joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{\mathrm{z}}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft.

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3 -D total torque vector \(\left[t t_{\mathrm{x}}, t t_{\mathrm{y}}\right.\), \(t t_{\mathrm{z}}\) ]. Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F-Follower frame

\section*{Actuation Ports}

The prismatic joint primitive provides the following actuation ports:
- fz - Actuation force acting on the Z prismatic joint primitive
- pz - Desired trajectory of the Z prismatic joint primitive

\section*{Sensing Ports}

The prismatic joint primitive provides the following sensing ports:
- pz — Position of the Z prismatic joint primitive
- vz - Velocity of the Z prismatic joint primitive
- az - Acceleration of the Z prismatic joint primitive
- fz - Actuation force acting on the Z prismatic joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:
- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\author{
See Also \\ Revolute Joint| Spherical Joint
}

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Translational Measurements"

\section*{Rack and Pinion Constraint}

Kinematic constraint for converting between rotation and translation

\section*{Library}

Gears and Couplings/Gears

\section*{Description}


This block represents a kinematic constraint between a rack and a pinion. The constraint converts rotation of the pinion into translation of the rack and vice-versa. The pinion, which connects to the base port frame, spins about the base Z axis. The rack, which connects to the follower port frame, translates along the follower Z axis.

Kinematic constraints in the remainder of the model must hold the base and follower frames at the correct distance and with the proper alignment. These constraints might be due to rigid transforms, joints, and model topology. Assembly conditions include:
- Base and follower Z axes must be mutually orthogonal. This condition ensures that the pinion rotation axis sits at a right angle to the rack translation axis. You can rotate frames using the Rigid Transform block.
- Base and follower frame origins must be apart by a distance equal to the Pinion Radius parameter. This condition ensures that the rack and pinion cogs are at the correct distance for engagement. You can translate frames using the Rigid Transform block.

The figure shows the distance and alignment of the base and follower frames in the zero configuration. This is the primary configuration that Simscape Multibody attempts to achieve during model assembly.


In the zero configuration, the pinion rotation angle and the rack translation distance are both zero. To achieve this configuration, Simscape Multibody:
- Aligns the base and follower Y axes.
- Positions the follower frame origin along the negative Y axis of the base frame.

Joint blocks provide the base and follower frames with the proper internal degrees of freedom. These degrees of freedom must support rotation about the base Z axis and translation along the follower Z axis. You can achieve these degrees of freedom using different joint block combinations. For example, you can connect the pinion to a Revolute Joint block and the rack to a Prismatic Joint block.

During simulation, a positive pinion rotation about the base Z axis corresponds to a positive rack translation along the follower Z axis. By definition, the translational velocity of the rack is equal to the tangential velocity at a point in the pinion pitch circle, an imaginary circle that intersects the rack and pinion cogs at the mutual contact point.

The figure shows the relative motion of the base and follower frames due to the rack and pinion constraint.


\section*{Dialog Box and Parameters}

Q Rack and Pinion Constraint : Rack and... \(\square\)
Description
Represents a rack and pinion constraint between two frames. The pinion gear rotates about the base \(z\) axis and the rack slides along the follower \(z\) axis.

In the zero configuration, the follower \(z\)-axis is parallel to the base \(x\) axis. The follower frame origin lies on the negative \(y\) axis of the base frame. The \(y\) axes of the base and follower frames are parallel. During simulation, the rack and pinion must be held in alignment by the rest of the mechanism.

Ports B and F are frame ports that represent the base and follower frames, respectively.

Properties
\begin{tabular}{|l|ll|l|}
\hline Pinion Radius & 10.0 & cm \\
\hline & & \\
\hline & OK Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Pinion Radius}

Distance between the pinion center and pitch circle. This circle contains the instantaneous contact point between a pair of rack and pinion cogs. The pinion radius must equal the actual distance between the base and follower frames as specified by the remainder of the model. The default value is 10 cm .

\section*{Ports}

The block contains frame ports B and F, representing base and follower frames, respectively.

\author{
See Also \\ Common Gear Constraint| Bevel Gear Constraint
}

\section*{Rectangular Joint}

Joint with two prismatic primitives

\section*{Library}

\author{
Joints
}

\section*{Description}


This block represents a joint with two translational degrees of freedom. Two prismatic primitives provide the two translational degrees of freedom. The base and follower frames remain parallel during simulation.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

\section*{1 Translation:}
a Along the X axis of the X Prismatic Primitive ( Px ) base frame.
b Along the Y axis of the Y Prismatic Primitive (Py) base frame. This frame is coincident with the X Prismatic Primitive (Px) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation.


\section*{Joint Transformation Sequence}

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}

\section*{Rectangular Joint: Rectangular Joint}
\(\square\)
Description
Represents a rectangular joint between two frames. This joint has two translational degrees of freedom represented by two prismatic primitives along a set of two mutually orthogonal axes. This joint constrains the \(z\)-axes of the base and follower frames to be aligned and prohibits relative translation along that axis.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
= X Prismatic Primitive ( Px )
\# State Targets
\(\pm\) Internal Mechanics
\(\oplus\) Actuation
\(\pm\) Sensing
\# Y Prismatic Primitive (Py)
+ Composite Force/Torque Sensing

\section*{Prismatic Primitive: State Targets}

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and \(\mathrm{m} / \mathrm{s}\) for velocity.

\section*{Prismatic Primitive: Internal Mechanics}

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

\section*{Spring Stiffness}

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is \(\mathrm{N} / \mathrm{m}\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N /(\mathrm{m} / \mathrm{s})\).

\section*{Prismatic Primitive: Actuation}

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

\section*{Force}

Select an actuation force setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline None & No actuation force. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation force from physical signal \\
input. The signal provides the force \\
acting on the follower frame with \\
respect to the base frame along the joint \\
primitive axis. An equal and opposite \\
force acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Force Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation force from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation force \\
based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Prismatic Primitive: Sensing}

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

\section*{Actuator Force}

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint
force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector \(\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.\), \(f c_{\mathrm{z}}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector [ \(t c_{\mathrm{x}}, t c_{\mathrm{y}}\), \(t c_{z}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(\left.t t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The prismatic joint primitives provide the following actuation ports:
- fx, fy - Actuation forces acting on the X and Y prismatic joint primitives
- px, py - Desired trajectories of the X and Y prismatic joint primitives

\section*{Sensing Ports}

The prismatic joint primitives provide the following sensing ports:
- px, py - Positions of the X and Y prismatic joint primitives
- vx, vy - Velocities of the \(X\) and \(Y\) prismatic joint primitives
- ax, ay - Accelerations of the X and Y prismatic joint primitives
- fx, fy - Actuation forces acting on the X and Y prismatic joint primitives

The following sensing ports provide the composite forces and torques acting on the joint:
- fc-Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Prismatic Joint | Planar Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Translational Measurements"

\section*{Reference Frame}

Non-inertial reference frame

\section*{Library}

Frames and Transforms

\section*{Description}


This block represents a reference frame with respect to which you can define other frames. The reference frame is generally non-inertial. It can accelerate with respect to the World frame. This block is optional in a model.

\section*{Dialog Box and Parameters}

L Reference Frame : Reference Frame \(\square\)
Description
Defines a frame to which other frames in a network can be referenced or to which blocks can be attached. Reference frames are not required, but serve as a modeling and design convenience.

Port R is a frame port identified with the reference frame.
Any frame port directly connected to R is also identified with the reference frame.

OK Cancel Help Apply

\section*{Ports}

This block contains frame port R , representing the reference frame.

\section*{See Also}

World Frame | Rigid Transform

\section*{Revolute Joint}

Joint with one revolute primitive

\section*{Library}

Joints

\section*{Description}


This block represents a joint with one rotational degree of freedom. One revolute primitive provides the rotational degree of freedom. The base and follower frame origins remain coincident during simulation.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a single timevarying transformation. The Z revolute primitive \((\mathrm{Pz})\) applies this transformation, which causes the follower frame to rotate with respect to the base frame about the common Z axis.


\section*{Joint Transformation}

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}

\section*{Revolute Joint: Revolute Joint}
\(\square\)
Description
Represents a revolute joint acting between two frames. This joint has one rotational degree of freedom represented by one revolute primitive. The joint constrains the origins of the two frames to be coincident and the \(z\)-axes of the base and follower frames to be coincident, while the follower \(x\)-axis and \(y\)-axis can rotate around the \(z\)-axis.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties
= Z Revolute Primitive (Rz)
\(\oplus\) State Targets
\(\pm\) Internal Mechanics
\(\oplus\) Actuation
\(\pm\) Sensing
\# Composite Force/Torque Sensing

\section*{Revolute Primitive: State Targets}

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

\section*{Revolute Primitive: Internal Mechanics}

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

\section*{Spring Stiffness}

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is \(N * m / d e g\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N * m /(d e g / s)\).

\section*{Revolute Primitive: Actuation}

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

\section*{Torque}

Select an actuation torque setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline None & No actuation torque. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation torque from physical signal \\
input. The signal provides the torque \\
acting on the follower frame with \\
respect to the base frame about the joint \\
primitive axis. An equal and opposite \\
torque acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation torque from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation \\
torque based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Revolute Primitive: Sensing}

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Actuator Torque}

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint
force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector \(\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.\), \(f c_{z}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{z}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft.

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(\left.t t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The revolute joint primitive provides the following actuation ports:
- tz - Actuation torque acting on the Z revolute joint primitive
- qz — Desired rotation of the Z revolute joint primitive

\section*{Sensing Ports}

The revolute joint primitive provides the following sensing ports:
- qz - Angular position of the Z revolute joint primitive
- wz - Angular velocity of the Z revolute joint primitive
- bz - Angular acceleration of the Z revolute joint primitive
- tz - Actuation torque acting on the Z revolute joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:
- fc-Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Prismatic Joint| Spherical Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"

\section*{Rigid Transform}

Fixed spatial relationship between frames

\section*{Library}

Frames and Transforms

\section*{Description}


This block applies a time-invariant transformation between two frames. The transformation rotates and translates the follower port frame ( F ) with respect to the base port frame (B). Connecting the frame ports in reverse causes the transformation itself to reverse. The frames remain fixed with respect to each other during simulation, moving only as a single unit. Combine Rigid Transform and Solid blocks to model compound rigid bodies.

\section*{Dialog Box and Parameters}

\section*{Rigid Transform : Rigid Transform}


Description
Defines a fixed 3-D rigid transformation between two frames. Two components independently specify the translational and rotational parts of the transformation. Different translations and rotations can be freely combined.

In the expandable nodes under Properties, choose the type and parameters of the two transformation components.

Ports B and F are frame ports that represent the base and follower frames, respectively. The transformation represents the follower frame origin and axis orientation in the base frame.

Properties
= Rotation
Method
None

+ Translation


\section*{Rotation: Method}

Select the method to use to specify rotation. The default is None.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline None & \begin{tabular}{l} 
Constrain the base and follower frames to \\
share the same orientation.
\end{tabular} \\
\hline Aligned Axes & \begin{tabular}{l} 
Set frame rotation by aligning two follower \\
frame axes with two base frame axes.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline Standard Axis & \begin{tabular}{l} 
Specify frame rotation as an angle about a \\
standard axis \((x, y\), or \(z)\).
\end{tabular} \\
\hline Arbitrary Axis & \begin{tabular}{l} 
Specify frame rotation as an angle about a \\
general \([x, y, z]\) axis.
\end{tabular} \\
\hline Rotation Sequence & \begin{tabular}{l} 
Specify frame rotation as a sequence of \\
three elementary rotations.
\end{tabular} \\
\hline Rotation Matrix & \begin{tabular}{l} 
Specify frame rotation as a right-handed \\
orthogonal rotation matrix.
\end{tabular} \\
\hline
\end{tabular}

\section*{Aligned Axes}

Select two pairs of base-follower frame axes.
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Pair 1 & \begin{tabular}{l} 
First pair of base-follower frame axes to \\
align.
\end{tabular} \\
\hline Pair 2 & \begin{tabular}{l} 
Second pair of base-follower frame axes \\
to align. Axis choices depend on Pair 1 \\
axis selections.
\end{tabular} \\
\hline
\end{tabular}

\section*{Standard Axis}

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Axis & \begin{tabular}{l} 
Standard rotation axis (X, Y, or Z) \\
resolved in the base frame.
\end{tabular} \\
\hline Angle & \begin{tabular}{l} 
Follower frame rotation angle about the \\
rotation axis with respect to the base \\
frame.
\end{tabular} \\
\hline
\end{tabular}

\section*{Arbitrary Axis}

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Axis & \begin{tabular}{l} 
General rotation axis [X Y Z] resolved in \\
the base frame.
\end{tabular} \\
\hline Angle & \begin{tabular}{l} 
Follower frame rotation angle about the \\
rotation axis with respect to the base \\
frame.
\end{tabular} \\
\hline
\end{tabular}

\section*{Rotation Sequence}

Specify a sequence of three elementary rotations about the selected permutation of \(\mathrm{x}, \mathrm{y}\), and z axes. These rotation sequences are also known as Euler and Tait-Bryan sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Rotation About & \begin{tabular}{l} 
Frame whose axes to rotate the follower \\
frame about.
\end{tabular} \\
\hline Sequence & \begin{tabular}{l} 
Sequence of axes about which to apply \\
the elementary rotations.
\end{tabular} \\
\hline Angles & \begin{tabular}{l} 
Three-element vector with elementary \\
rotation angles about the axes specified \\
in the Sequence parameter.
\end{tabular} \\
\hline
\end{tabular}

\section*{Rotation Matrix}

Specify the \(3 \times 3\) transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is \(\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 0 ; & 0\end{array}\right]\).

\section*{Translation: Method}

Select the method to use to specify translation. The default is None.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline None & \begin{tabular}{l} 
Make base and follower frames coincident. \\
This method requires no parameters.
\end{tabular} \\
\hline Cartesian & \begin{tabular}{l} 
Specify a 3-D translation in terms of \\
Cartesian coordinates
\end{tabular} \\
\hline Standard Axis & \begin{tabular}{l} 
Specify a 1-D translation along the X, Y, or \\
Z axis
\end{tabular} \\
\hline Cylindrical & \begin{tabular}{l} 
Specify a 3-D translation in terms of \\
cylindrical coordinates
\end{tabular} \\
\hline
\end{tabular}

Cartesian Axis
Specify the Offset of the follower frame with respect to the base frame. This is the 3 -D translation vector that brings the base frame into coincidence with the follower frame. Select or enter a physical unit.

\section*{Standard Axis}

Specify the offset of the follower frame with respect to the base frame along the base frame X, Y, or Z axis. Select or enter a physical unit.
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Axis & Axis the follower frame translates along \\
\hline Offset & \begin{tabular}{l} 
Translation of the follower frame with \\
respect to the base frame along the \\
specified axis
\end{tabular} \\
\hline
\end{tabular}

\section*{Cylindrical}

Specify in cylindrical coordinates the translation that brings the base frame into coincidence with the follower frame. Select or enter a physical unit.
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Radius & \begin{tabular}{l} 
Distance between the origin of the \\
follower frame and the Z axis of the base \\
frame. This is the cylindrical radius \\
coordinate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Parameter & Description \\
\hline Theta & \begin{tabular}{l} 
Rotation angle of the line connecting \\
base and follower frame origins with \\
respect to the base frame X axis. This is \\
the cylindrical azimuth coordinate.
\end{tabular} \\
\hline Z Offset & \begin{tabular}{l} 
Distance between base and follower \\
frame origins along the base frame \\
Z axis. This is the cylindrical length \\
coordinate.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ports}

Frame ports B and F represent the base and follower frames.

\section*{Solid}

Rigid solid with geometry, inertia, and color

\section*{Library}

Body Elements

\section*{Description}


This block represents a rigid solid with geometry, inertia, and color. The solid can be a simple rigid body or part of a compound rigid body-a group of rigidly connected solids, often separated in space through rigid transformations. Combine Solid and Rigid Transform blocks to model a compound rigid body.

Geometry parameters include shape and size. You can choose from a list of preset shapes or import a custom shape from an external file in STL or STEP format. The block can automatically compute the inertial properties of the solid based on the geometry you specify given its mass or mass density.

A reference frame encodes the position and orientation of the solid. In the default configuration, the block provides only the reference frame. A frame-creation interface provides the means to define additional frames based on solid geometry features. You access this interface by selecting the Create button in the Frames expandable area.

Frame port R identifies the solid reference frame. The block provides the option to hide this port. Each frame defined through the frame-creation interface causes the block to expose an additional frame port. The labels on the ports are the frame names specified in the frame-creation interface.

The block dialog box contains a collapsible visualization pane. This pane provides instant visual feedback on the solid you are modeling. Use it to find and fix any issues with the shape and color of the solid. You can examine the solid from different perspectives by selecting a standard view or by rotating, panning, and zooming the solid.

\section*{Dialog Box and Parameters}


\section*{Geometry}

\section*{Shape}

Select a solid shape. The table summarizes the various shapes that you can select. The default shape is Brick.
\begin{tabular}{|l|l|l|}
\hline Shape & Description & Example \\
\hline Cylinder & \begin{tabular}{l} 
Cylindrical shape with \\
geometry center at the \\
reference frame origin and \\
symmetry axis aligned
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Shape & Description & Example \\
\hline & \begin{tabular}{l} 
with reference frame Z \\
axis
\end{tabular} & \\
\hline Sphere & \begin{tabular}{l} 
Spherical shape with \\
geometry center at the \\
reference frame origin.
\end{tabular} & \\
\hline Brick & \begin{tabular}{l} 
Prismatic shape with \\
geometry center at the \\
reference frame origin and \\
faces normal to X, Y, Z \\
axes.
\end{tabular} & \\
\hline Ellipsoid & \begin{tabular}{l} 
3-D extension of ellipse \\
with geometry center at \\
the reference frame origin \\
and semi-principal axes \\
aligned with reference \\
frame X, Y, Z axes.
\end{tabular} & \\
\hline Regular Extrusion & \begin{tabular}{l} 
3-D sweep of regular \\
polygon cross-section along \\
an extrusion axis.
\end{tabular} & \\
\hline \begin{tabular}{l} 
Shape has geometry center \\
at the reference frame
\end{tabular} & \\
\hline \begin{tabular}{l} 
origin, and extrusion axis \\
aligned with reference \\
frame Z axis. Cross-section \\
is constant along extrusion \\
length.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Shape & Description & Example \\
\hline General Extrusion & \begin{tabular}{l}
3-D sweep of general crosssection shape along an extrusion axis. \\
Reference frame origin coincides with crosssection ( 0,0 ) coordinate, halfway along extrusion length. Reference frame Z axis aligns with extrusion axis. \\
Cross-section lies in reference frame XY plane. Cross-section shape and dimensions are constant along extrusion length.
\end{tabular} & \\
\hline Revolution & \begin{tabular}{l}
3-D sweep of general crosssection about a revolution axis. \\
Reference frame origin coincides with crosssection \((0,0)\) coordinate. Reference frame Z axis aligns with revolution axis. \\
Cross-section lies in reference frame XZ plane. Revolutions can be full (revolution angle \(=360^{\circ}\) ) or partial ( \(0^{\circ}<\) revolution angle \(<360^{\circ}\) ). For partial revolutions, the reference frame X axis splits the revolution into two symmetric halves.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Shape & Description & Example \\
\hline From File & \begin{tabular}{l} 
3-D shape loaded \\
from STL (Standard \\
Tessellation Language) or \\
STEP (Standard for the \\
Exchange of Product Data)
\end{tabular} & \\
file. \\
& \begin{tabular}{l} 
The reference frame has \\
the origin and orientation \\
defined in the file.
\end{tabular} & \\
\hline
\end{tabular}

\section*{Cylinder: Radius}

Enter the cylinder radius. This is the distance between the origin and circumference of the transverse cross-section. The default value is 1 . Select or enter a physical unit. The default is m .

\section*{Cylinder: Length}

Enter the cylinder length. This is the distance between the two flat surfaces measured along the symmetry axis. The default value is 1 . Select or enter a physical unit. The default is m .

\section*{Sphere: Radius}

Enter the spherical radius. This is the distance between the origin and surface of the sphere. The default value is 1 .

\section*{Brick: Dimensions}

Enter a three element vector [ \(a b c\) ] with the brick dimensions along the reference frame X, Y, and Z axes, respectively. The default vector is [ \(\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]\). Select a physical unit. The default unit is m .

\section*{Ellipsoid: Radii}

Enter a three element vector \([a b c\) ] with the ellipsoid semi-principal axes along the reference frame \(X, Y\), and \(Z\) axes, respectively. The default vector is [ \(\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]\). Select a physical unit. The default unit is \(m\).

\section*{Regular Extrusion: Number of Sides}

Enter the number of sides for the polygonal cross-section. The minimum number of sides is 3 . The default value is 3 .

\section*{Regular Extrusion: Outer Radius}

Enter the radius of the smallest circle required to completely enclose the polygonal cross-section. This is equal to the distance from the polygon center to the intersection of any two polygon edges. The default value is 1 . Select a physical unit. The default unit is m .

\section*{Regular Extrusion: Length}

Enter the extrusion length. This is the distance along which to sweep the 2-D crosssection. The default value is 1 . Select a physical unit. The default unit is \(m\).

\section*{General Extrusion: Cross-section}

Enter the cross-section coordinate matrix. This is a matrix with \(N\) rows, each with the [X Y] coordinates of a single cross-section point. Coordinates must define a single closed loop. The loop must not self-intersect. The closed loop divides dense and empty regions according to the following rule: as viewed at each point along the crosssection, the dense region lies to the left of the cross-section segment, while the empty region lies to the right. Select a physical unit. The default unit is m .

\section*{General Extrusion: Length}

Enter the extrusion length. This is the distance along which to sweep the 2-D crosssection. The default value is 1 . Select a physical unit. The default unit is \(m\).

\section*{Revolution: Cross-section}

Enter the cross-section coordinate matrix. This is a matrix with \(N\) rows, each with the [X Z] coordinates of a single cross-section point. Coordinates must define a closed loop. The loop must not self-intersect. X-coordinate values must be greater than or equal to zero. The closed loop divides dense and empty regions according to the following rule: as viewed at each point along the cross-section, the dense region lies to the left of the cross-section segment, while the empty region lies to the right. Select a physical unit. The default unit is \(m\).

\section*{Revolution: Extent of Revolution}

Specify the angle to revolve the cross-section through. Select Full for a 360 degree revolution. Select Custom and enter a revolution angle for partial revolutions. The revolution angle must lie between 0 and 360 degrees.

\section*{From File: File Type}

Select the format of the source file with the solid geometry data. Formats include STL and STEP.

STL (Standard Tessellation Language) files represent the surface geometry of a 3D solid as a matrix of 2-D triangular elements. A normal vector and three vertex coordinate sets, included in the STL file, fully define each triangular element in the tessellated surface. Selecting STL exposes an additional option, Units.

STEP (Standard for the Exchange of Product Data) files represent the surface geometry of a 3-D solid using a set of analytical curves. These files can include additional information about a solid, such mass density and physical units.

The block provides automatic inertia computation from geometry only for STEPderived geometries. For STL-derived geometries, you must manually enter the solid inertia parameters.

\section*{From File: File Name}

Enter the name of the geometry source file. The name must include the file path, provided relative to the working directory.

\section*{From File: Units}

Select or enter the desired unit of length. The default is m . This option appears when you select STL as the geometry source file type.

\section*{Inertia}

Type
Select a method to specify the inertial properties of the solid. The default is Calculate from Geometry.
\begin{tabular}{|l|l|}
\hline Type & Description \\
\hline Calculate from Geometry & \begin{tabular}{l} 
Automatically compute moments and \\
products of inertia based on solid \\
geometry and either mass or density.
\end{tabular} \\
\hline Point Mass & \begin{tabular}{l} 
Treat the solid as an idealized mass \\
occupying an infinitely small volume \\
in space. The inertia tensor about the \\
center of mass is always zero for a point \\
mass. The position of the point mass \\
coincides with the origin of the reference \\
port frame. Select the Point Mass method \\
to represent a simple mass disturbance \\
on a rigid body.
\end{tabular} \\
\hline Custom & \begin{tabular}{l} 
Manually specify the inertial properties \\
of the solid, including moments and \\
products of inertia as well as center of \\
mass.
\end{tabular} \\
\hline
\end{tabular}

\section*{Calculate from Geometry: Based on}

Select the quantity to base inertia calculations on. Options are Density and Mass. Depending on the method you choose, enter the average mass density or the total mass of the solid. Select a physical unit.

\section*{Point Mass/Custom: Mass}

Enter the total mass of the solid. Select a physical unit. The default is 1 Kg .

\section*{Custom: Center of Mass}

Enter the center of mass coordinates with respect to the solid reference frame in the order [X Y Z]. In a uniform gravitational field, the center of mass coincides with the center of gravity. Select a physical unit. The default is [ \(\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]\).

\section*{Custom: Moments of Inertia}

Enter the mass moments of inertia of the solid element in the order \(\left[I_{x x}, I_{y y}, I_{z z}\right]\). Each moment of inertia must refer to a frame whose axes are parallel to the block reference frame axes and whose origin is coincident with the solid center of mass. The moments of inertia are the diagonal elements of the solid inertia tensor,
\[
\left(\begin{array}{lll}
I_{x x} & & \\
& I_{y y} & \\
& & I_{z z}
\end{array}\right) \text {, }
\]
where:
\[
\begin{aligned}
& I_{x x}=\int_{V}\left(y^{2}+z^{2}\right) d m \\
& I_{y y}=\int_{V}\left(x^{2}+z^{2}\right) d m \\
& I_{z z}=\int_{V}\left(x^{2}+y^{2}\right) d m
\end{aligned}
\]

Select a physical unit. The default is [ \(\left.\begin{array}{lll}1 & 1 & 1\end{array}\right] \quad \mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Custom: Products of Inertia}

Enter the mass products of inertia of the solid element in the order \(\left[\mathrm{I}_{\mathrm{yz}}, \mathrm{I}_{\mathrm{zx}}, \mathrm{I}_{\mathrm{xy}}\right]\). Each product of inertia must refer to a frame whose axes are parallel to the block reference
frame axes and whose origin is coincident with the solid center of mass. The products of inertia are the off-diagonal elements of the solid inertia tensor,
\[
\left(\begin{array}{ccc} 
& I_{x y} & I_{z x} \\
I_{x y} & & I_{y z} \\
I_{z x} & I_{y z} &
\end{array}\right) \text {, }
\]
where:
- \(I_{y z}=-\int_{V} y z d m\)
- \(I_{z x}=-\int_{V} z x d m\)
- \(I_{x y}=-\int_{V} x y d m\)

Select a physical unit. The default is \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \mathrm{kg} * \mathrm{~m}^{\wedge} 2\).

\section*{Graphic}

\section*{Type}

Select a method to represent the solid in Mechanics Explorer. The default is From Geometry.
\begin{tabular}{|l|l|}
\hline Type & Description \\
\hline From Geometry & Shape specified in Geometry section \\
\hline Marker & Simple icon such as Sphere, Cube, or \\
& Frame \\
\hline None & No visualization \\
\hline
\end{tabular}

\section*{Marker: Shape}

Geometric shape of the graphic marker. Options include Cube, Frame, and Sphere. The default setting is Sphere.
Marker: Size

Absolute size of the graphics marker in pixels. Changing the zoom level in the model visualization pane has no effect on the apparent marker size. The default value is 10 .

\section*{Visual Properties}

Color specification type. Options include Simple and Advanced. Select Simple to specify only the base color and opacity of your shape. Select Advanced to add lighting effects such as specular reflections and light emission.

\section*{Simple: Color}
[R G B] color vector. This vector contains the red (R), green (G), and blue (B) contents of the specified color on a scale of \(0-1\). The default vector is [ 0.50 .50 .5 ]. A color picker provides an alternative means of specifying color.

\section*{Simple: Opacity}

Degree to which your shape obscures model components positioned behind it. The opacity value can range from 0 to 1 . An opacity of 0 makes the shape completely translucent, while an opacity of 1 makes it completely opaque. The default value is 1.0 .

\section*{Advanced: Diffuse Color}
[R G B] or [R G B A] diffuse color vector. The diffuse color is the apparent color of the specified shape under direct white light. The color vector contains the red ( R ), green (G), and blue (B) contents of the diffuse color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is [0.5 0.5 0.5].

\section*{Advanced: Specular Color}
[R G B] or [R G B A] specular color vector. The specular color is the color of the glossy highlights on the periphery of the specified shape. The color vector contains the red \((\mathrm{R})\), green (G), and blue (B) contents of the specular color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is [0.5 0.50 .51 .0\(].\)

\section*{Advanced: Ambient Color}
[R G B] or [R G B A] ambient color vector. The ambient color is the apparent color of the specified shape under indirect ambient light. The color vector contains the red \((R)\), green (G), and blue (B) contents of the ambient color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is \(\left[\begin{array}{llll}0.15 & 0.15 & 0.15 & 1.0\end{array}\right.\).

\section*{Advanced: Emissive Color}
[R G B] or [R G B A] emissive color vector. The emissive color is the color of light the specified shape generates. The sun is an example of a body with emissive color. The
color vector contains the red (R), green (G), and blue (B) contents of the emissive color on a scale of \(0-1\). It can include an optional opacity value (A), also on a scale of \(0-1\). The default vector is \(\left[\begin{array}{llll}0.0 & 0.0 & 0.0 & 1.0\end{array}\right]\).

\section*{Advanced: Shininess}

Sharpness of the specular highlights on the periphery of the specified shape. The shininess value can range from 0 to 128. A low shininess value produces large specular highlights with a gradual falloff in intensity. A large shininess value produces small specular highlights with a sharp falloff in intensity. The default value is 75 .

\section*{Frames}

\section*{Show Port R}

Clear the check box to hide the reference frame port. Hiding the reference frame port suppresses the frame in Mechanics Explorer. If the block has no custom frames, you must show the reference frame port in order to connect the solid to the remainder of the model.

\section*{New Frame}

Select the Create button to define a new frame using the frame-creation interface. Each new frame appears on a row above the New Frame parameter. To edit an existing frame, select the Edit button . To delete an existing frame, select the Delete button

\section*{Frame Creation Interface}

Selecting the Create button from the Frames expandable area opens the framecreation interface. Use this interface to define a new frame interactively from geometry features. If you change a solid parameter, you must update the solid visualization before creating or adding frames. You do this by selecting the Update Visualization button \(\nRightarrow\).

\section*{Frame Name}

Enter the desired frame name. The block uses the frame name as the frame port label. Keep the frame name short to ensure that it fits in the length of the block.

\section*{Frame Origin}

Select the location of the frame origin. Options include:
- At Reference Frame Origin - Make the new frame origin coincident with the reference frame origin. This is the default option.
- At Center of Mass - Make the new frame origin coincident with the solid center of mass. The reference frame origin is located at the center of mass in symmetrical shapes such as spheres and bricks but not in certain extrusions or revolutions.
- Based on Geometric Feature - Place the new frame origin at the center of the selected geometry feature. Valid geometry features include surfaces, lines, and points. You must select a geometry feature from the visualization pane and then select the Use Selected Feature button.

The name of the selected geometry feature appears in the field below this option.

\section*{Frame Axes : Primary Axis}

Select the axis of the new frame that you want to set as the primary axis. The primary axis constrains the possible orientations of the remaining two axes. Specify the orientation of the primary axis by selecting from the following options:
- Along Reference Frame Axis - Align the primary axis with the selected axis of the reference frame.
- Along Principal Inertia Axis - Align the primary axis with the selected principal inertia axis. The principal inertia axes are those about which the products of inertia are zero.
- Based on Geometric Feature - Align the primary axis with the vector associated with the selected geometric feature. Valid geometric features include surfaces and lines.

\section*{Frame Axes : Secondary Axis}

Select the axis of the new frame that you want to set as the secondary axis. The secondary axis is the projection of the selected direction onto the normal plane of the primary axis. Select the direction to project from the following options:
- Along Reference Frame Axis - Project the selected reference frame axis onto the normal plane of the primary axis. Align the secondary axis with the projection.
- Along Principal Inertia Axis - Project the selected principal inertia axis onto the normal plane of the primary axis. Align the secondary axis with the projection. The principal inertia axes are those about which the products of inertia are zero.
- Based on Geometric Feature - Project the vector associated with the selected geometry feature onto the normal plane of the primary axis. Align the secondary axis with the projection. Valid geometry features include surfaces and lines. You must select a geometry feature from the visualization pane and then select the Use Selected Feature button.

\section*{Visualization Pane}

The visualization pane provides visual feedback on the solid you are modeling. You can view the solid geometry, color, and frames from various view points. A visualization toolstrip enables you to rotate, pan, and zoom or to select a standard view point.

Select the Update Visualization button \(\not \approx\) to view the latest changes to the solid geometry in the visualization pane. Select Apply or OK to commit your changes to the solid. Closing the block dialog box without first selecting Apply or OK causes the block to discard those changes.


A - Show/Hide Visualization Pane
B - Update Visualization
C - Select | Rotate \| Pan | Zoom | Zoom to Region | Fit to View
D - Front | Back | Top | Bottom | Left | Right | Isometric Views
E - Show/Hide Frame

\section*{Solid Visualization Pane}

\section*{Ports}

Frame port R identifies the solid reference frame. Optional frame ports identify the frames defined in the frame-creation interface. The port labels are the frame names specified in the interface.
See AlsoRigid Transform \| Spline
Related Examples
- "Interactively Create Solid Frames"

\section*{Spherical Joint}

Joint with one spherical primitive

\section*{Library}

Joints

\section*{Description}


This block represents a joint with three rotational degrees of freedom. One spherical primitive provides the three rotational degrees of freedom. The base and follower frame origins remain coincident during simulation.


\section*{Joint Degrees of Freedom}

The joint block represents motion between the base and follower frames as a single timevarying transformation. The spherical primitive (S) applies this transformation, which causes the follower frame to rotate with respect to the base frame about an arbitrary 3-D axis. This joint primitive is not susceptible to gimbal lock.


\section*{Joint Transformation}

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

\section*{Dialog Box and Parameters}
```

Spherical Joint: Spherical Joint
\square
Description
Represents a spherical joint between two frames. This joint is also called a ball and socket joint and has three rotational degrees of freedom represented by one spherical primitive. The joint constrains the origins of the two frames to be coincident. The follower frame rotates freely around this common origin as the pivot.
In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.
Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties

- Spherical Primitive (S)
State Targets
\pm Internal Mechanics
\pm Actuation
\pm Sensing
+ Composite Force/Torque Sensing

Spherical Primitive: State Targets

Specify the spherical primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Low-priority targets behave as rough guides.

Value

Select a method to specify the joint primitive state target.

Method	Description
None	Constrain the base and follower frames to share the same orientation.
Aligned Axes	Set frame rotation by aligning two follower frame axes with two base frame axes.

Method	Description
Standard Axis	Specify frame rotation as an angle about a standard axis $(x, y$, or $z)$.
Arbitrary Axis	Specify frame rotation as an angle about a general $[x, y, z]$ axis.
Rotation Sequence	Specify frame rotation as a sequence of three elementary rotations.
Rotation Matrix	Specify frame rotation as a right-handed orthogonal rotation matrix.

Aligned Axes

Select two pairs of base-follower frame axes.

Parameter	Description
Pair 1	First pair of base-follower frame axes to align.
Pair 2	Second pair of base-follower frame axes to align. Axis choices depend on Pair 1 axis selections.

Standard Axis

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	Standard rotation axis (X, Y, or Z) resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Arbitrary Axis

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	General rotation axis [X Y Z] resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Rotation Sequence

Specify a sequence of three elementary rotations about the selected permutation of x, y, and z axes. These rotation sequences are also known as Euler and Tait-Bryan sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.

Parameter	Description
Rotation About	Frame whose axes to rotate the follower frame about.
Sequence	Sequence of axes about which to apply the elementary rotations.
Angles	Three-element vector with elementary rotation angles about the axes specified in the Sequence parameter.

Rotation Matrix

Specify the 3×3 transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is $[100 ; 010 ; 001]$.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields. The priority field is identical to that used for the position state target.

Value

Enter a three element vector with the angular velocity components of the follower frame with respect to the base frame. Select a physical unit. The default is deg/s (degree/second).

Resolution Frame

From the drop-down list, select a resolution frame. This is the frame in which the state target is resolved. It identifies the axes the velocity vector components apply to. The default is Follower.

Spherical Primitive: Internal Mechanics

Specify the spherical primitive internal mechanics. This includes linear spring and damping forces, accounting for energy storage and dissipation, respectively. To ignore internal mechanics, keep spring stiffness and damping coefficient values at the default value of 0 .

Equilibrium Position

Select a method to specify the spring equilibrium position. The equilibrium position is the rotation angle between base and follower port frames at which the spring torque is zero.

Method	Description
None	Constrain the base and follower frames to share the same orientation.
Aligned Axes	Set frame rotation by aligning two follower frame axes with two base frame axes.
Standard Axis	Specify frame rotation as an angle about a standard axis $(x, y$, or $z)$.
Arbitrary Axis	Specify frame rotation as an angle about a general $[x, y, z]$ axis.
Rotation Sequence	Specify frame rotation as a sequence of three elementary rotations.
Rotation Matrix	Specify frame rotation as a right-handed orthogonal rotation matrix.

[^0]Select two pairs of base-follower frame axes.

Parameter	Description
Pair 1	First pair of base-follower frame axes to align.
Pair 2	Second pair of base-follower frame axes to align. Axis choices depend on Pair 1 axis selections.

Standard Axis

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	Standard rotation axis (X, Y, or Z) resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Arbitrary Axis

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	General rotation axis [X Y Z] resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Rotation Sequence

Specify a sequence of three elementary rotations about the selected permutation of x, y, and z axes. These rotation sequences are also known as Euler and Tait-Bryan
sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.

Parameter	Description
Rotation About	Frame whose axes to rotate the follower frame about.
Sequence	Sequence of axes about which to apply the elementary rotations.
Angles	Three-element vector with elementary rotation angles about the axes specified in the Sequence parameter.

Rotation Matrix

Specify the 3×3 transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is $[100 ; 010 ; 001]$.

Spring Stiffness

Enter the linear spring constant. This is the torque required to displace the joint primitive by a unit angle. The term linear refers to the mathematical form of the spring equation. The default is 0 . Select a physical unit. The default is $\mathrm{N} * \mathrm{~m} / \mathrm{deg}$.

Damping Coefficient

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select a physical unit. The default is $N * m /(\mathrm{deg} / \mathrm{s})$.

Spherical Primitive: Actuation

Specify actuation options for the spherical joint primitive. Actuation modes include Torque only. Selecting a torque input adds the corresponding physical signal port to the block. Use this port to specify the actuation torque signal.

Torque

Select a source for the actuation torque. The default setting is None.

Actuation Torque Setting
None
Provided by Input

Description

Apply no actuation torque.
Apply an actuation torque based on a physical signal. The signal specifies the torque acting on the follower frame with respect to the base frame. An equal and opposite torque acts on the base frame. Selecting this option exposes additional parameters.

Torque (X), Torque (Y), Torque (Z)

Select in order to actuate the spherical joint primitive about each standard Cartesian axis (X, Y, Z) separately. The block exposes the corresponding physical signal ports. Use these ports to specify the actuation torque signals. The signals must be scalar values.

Torque (XYZ)

Select in order to actuate the spherical joint primitive about an arbitrary axis [X Y Z]. The block exposes the corresponding physical signal port. Use this port to specify the actuation torque signal. The signal must be a $3-\mathrm{D}$ vector.

Frame

Select the frame to resolve the actuation torque signal in. The axes of this frame establish the directions of the X, Y, and Z torque components. The default setting is Base.

Spherical Primitive: Sensing

Select the motion variables to sense in the spherical joint primitive. The block adds the corresponding physical signal ports. Use these ports to output the numerical values of the motion variables.

The block measures each motion variable for the follower frame with respect to the base frame. It resolves that variable in the resolution frame that you select from the Frame drop-down list.

Motion Variables	Description
Position	Quaternion describing follower frame rotation with respect to base frame. The quaternion coefficients are $\left[\cos \left(\frac{\theta}{2}\right), n_{x} \sin \left(\frac{\theta}{2}\right), n_{y} \sin \left(\frac{\theta}{2}\right), n_{z} \sin \left(\frac{\theta}{2}\right)\right]$. The measurement is the same in all measurement frames.
Velocity (X), Velocity (Y), Velocity (Z)	Angular velocity components about X, Y, and Z axes.
Velocity	$3-D$ angular velocity vector with components about X, Y, and Z axes.
Acceleration (X), Acceleration (Y), Acceleration (Z)	Angular acceleration components about X, Y, and Z axes.
Acceleration	$3-\mathrm{D}$ angular acceleration vector with components about X, Y, and Z axes.

Frame

Select the frame to resolve the measurement in. The axes of this frame establish the directions of X, Y, and Z vector components. The default setting is Base.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector $\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.$, $f c_{z}$] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector $\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.$, $t c_{\mathrm{z}}$] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft.

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the $3-\mathrm{D}$ total torque vector $\left[t t_{\mathrm{x}}, t t_{\mathrm{y}}\right.$, $\left.t t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B-Base frame
- F - Follower frame

Actuation Ports

The spherical joint primitive provides the following actuation ports:

- t - Actuation torque vector $[t x, t y, t z]$ acting on the spherical joint primitive
- tx, ty, tz - X, Y, and Z components of the actuation torque acting on the spherical joint primitive

Sensing Ports

The spherical primitive provides the following sensing ports:

- Q - Orientation of the spherical joint primitive in quaternion form
- wx, wy, wz - X, Y, and Z angular velocity components of the spherical joint primitive
- w - Angular velocity $[w x, w y, w z]$ of the spherical joint primitive
- bx, by, bz - X, Y, and Z angular acceleration components of the spherical joint primitive
- b-Angular acceleration [bx,by,bz] of the spherical joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc-Constraint torque
- ft - Total force
- tt - Total torque

See Also

6-DOF Joint | Gimbal Joint | Bushing Joint | Revolute joint

More About

- "Motion Sensing"
- "Measurement Frames"
- "Actuating and Sensing Using Physical Signals"

Spline

Cubic interpolating plane or space curve

Library

Curves and Surfaces

Description

This block represents a continuous spline curve based on cubic interpolation between the points specified. The curve can be two-dimensional, such as a planar cam profile, or three-dimensional, such as a roller coaster track. Depending on the end conditions selected, the curve can be either open or closed.

Cam profile - An Example of a 2-D Spline Curve

Whether a spline curve is two- or three-dimensional depends solely on the coordinate matrix dimensions. A two-column matrix specifies a two-dimensional curve in the $x y$ plane. Each row in this matrix provides the $[x, y]$ coordinates of a point. A three-column matrix specifies a three-dimensional curve. Each row in this matrix provides the $[x, y$, $z]$ coordinates of a point. All coordinates are resolved in the local reference frame of the block.

The spline curve is a piecewise function of third-order polynomial segments connected end-to-end. The curve is built such that adjacent polynomial segments have the same first and second derivatives at the shared end point. If the curve is periodic, an additional
curve segment connects the last point specified to the first point. The first and second derivatives of this segment matches those of the adjacent segments at the shared end point.

Dialog Box and Parameters

Interpolation Points

Enter the coordinates of the interpolation points as an $[x, y]$ matrix for a 2-D curve or $[x, y, x]$ matrix for a 3-D curve. Coordinates are resolved in the reference frame of the block. The default input is a 6×3 matrix representing a 3 -D curve.

If you set the end conditions to Periodic (Closed), the block joins the first and last data points with an additional spline segment. Like all spline segments, the additional segment and its first two derivatives are continuous at the shared point.

Each data point in the coordinate matrix must be unique. If the curve is closed, ensure the first and last data points are not the same.

End Conditions

Select the end conditions to use. Periodic end conditions correspond to a closed curve. Natural end conditions correspond to an open curve. The default setting is Periodic (Closed).

Graphic

Type

Select a method to represent the shape in Mechanics Explorer. The default is From Geometry.

Type	Description
From Geometry	Shape specified in Geometry section
Marker	Simple icon such as Sphere, Cube, or
	Frame
None	No visualization

Marker: Shape

Geometric shape of the graphic marker. Options include Cube, Frame, and Sphere. The default setting is Sphere.

Marker: Size

Absolute size of the graphic marker in pixels. Changing the zoom level in the model visualization pane has no effect on the apparent marker size. The default value is 10 .

Visual Properties

Color specification type. Options include Simple and Advanced. Select Simple to specify only the base color and opacity of your shape. Select Advanced to add lighting effects such as specular reflections and light emission.

Simple: Color

[R G B] color vector. This vector contains the red (R), green (G), and blue (B) contents of the specified color on a scale of $0-1$. The default vector is [0.5 0.5 0.5]. A color picker provides an alternative means of specifying color.

Simple: Opacity

Degree to which your shape obscures model components positioned behind it. The opacity value can range from 0 to 1 . An opacity of 0 makes the shape completely translucent, while an opacity of 1 makes it completely opaque. The default value is 1.0.

Advanced: Diffuse Color

[R G B] or [R G B A] diffuse color vector. The diffuse color is the apparent color of the specified shape under direct white light. The color vector contains the red (R), green (G), and blue (B) contents of the diffuse color on a scale of $0-1$. It can include an optional opacity value (A), also on a scale of $0-1$. The default vector is [0.5 0.5 0.5].

Advanced: Specular Color

[R G B] or [R G B A] specular color vector. The specular color is the color of the glossy highlights on the periphery of the specified shape. The color vector contains the red (R), green (G), and blue (B) contents of the specular color on a scale of $0-1$. It can include an optional opacity value (A), also on a scale of $0-1$. The default vector is $\left[\begin{array}{llll}0.5 & 0.5 & 0.5 & 1.0\end{array}\right]$.

Advanced: Ambient Color

[R G B] or [R G B A] ambient color vector. The ambient color is the apparent color of the specified shape under indirect ambient light. The color vector contains the red (R), green (G), and blue (B) contents of the ambient color on a scale of $0-1$. It can include an optional opacity value (A), also on a scale of $0-1$. The default vector is $\left[\begin{array}{llll}0.15 & 0.15 & 0.15 & 1.0\end{array}\right.$.

Advanced: Emissive Color

[R G B] or [R G B A] emissive color vector. The emissive color is the color of light the specified shape generates. The sun is an example of a body with emissive color. The color vector contains the red (R), green (G), and blue (B) contents of the emissive color on a scale of $0-1$. It can include an optional opacity value (A), also on a scale of $0-1$. The default vector is $\left[\begin{array}{llll}0.0 & 0.0 & 0.0 & 1.0\end{array}\right]$.

Advanced: Shininess

Sharpness of the specular highlights on the periphery of the specified shape. The shininess value can range from 0 to 128 . A low shininess value produces large specular highlights with a gradual falloff in intensity. A large shininess value produces small specular highlights with a sharp falloff in intensity. The default value is 75 .

Ports

The block contains frame port R, representing a local reference frame, and geometry port G, representing the specified spline curve.

See Also

Point On Curve Constraint | Solid | Graphic

Spring and Damper Force

Force proportional to the distance and relative velocity between two frame origins

Library

Forces and Torques

Description

This block represents a linear spring and damper force pair acting reciprocally between base and follower frame origins. The two forces in the pair have equal magnitude but opposite directions. One force acts on the base frame origin, along the vector connecting follower to base frame origins. The other force acts on the follower frame origin, along the vector connecting base to follower frame origins.

The magnitude of the spring force component is proportional to the distance between base and follower frame origins. This distance is the length of the straight line segment connecting the two origins. The magnitude of the damper force component is proportional to the relative velocity of the follower frame origin with respect to the base frame.

Dialog Box and Parameters

Spring and Damper Force : Spring and...
Description -
Applies a linear damped spring force between the two
frames that the block is connected to and acts along the line
connecting the two frame origins. The forces are equal and
opposite on the attached frames. The spring force is
attractive between the frames if the spring distance is
greater than the spring's natural length.
In the expandable nodes under Properties, enter the force
parameters. If you choose to measure the force, the block
displays the corresponding output physical signal ports.
Ports B and F are frame ports that represent the base and
follower frames, respectively.
Properties Natural Length 0 m Spring Stiffness 0 $\mathrm{~N} / \mathrm{m}$ Damping Coeffi... 0 \square Cancel Sense Force Help

Natural Length

Enter the equilibrium distance between the base and follower frame origins. This is the distance at which the magnitude of the spring force is zero. The default value is 0 . Select or enter a physical unit.

Spring Stiffness

Enter the value of the linear spring constant. The value must be greater than or equal to zero. The default value is zero. Select or enter a physical unit.

Damping Coefficient

Enter the value of the linear damping coefficient. The value must be greater than or equal to zero. The default value is zero. Select or enter a physical unit.

Sense Force

Select to sense the signed magnitude of the spring and damper force acting between the two frame origins. The block exposes an additional physical signal port to output the force signal. The output signal is a scalar value. This value is positive if the force is repulsive; it is negative if the force is attractive.

Ports

The block contains frame ports B and F, representing base and follower frames, respectively.

Selecting the Sense Force check box in the block dialog box adds a physical signal port, fm.

See Also
External Force and Torque | Internal Force | Inverse Square Law Force

More About

- "Actuating and Sensing Using Physical Signals"

Telescoping Joint

Joint with one prismatic and one spherical joint primitive

Library

Joints

Description

This block represents a joint with one translational and three rotational degrees of freedom. One prismatic primitive provides the translational degree of freedom. One spherical primitive provides the three rotational degrees of freedom.

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Rotation:

- About an arbitrary 3-D axis resolved in the Spherical Primitive (S) base frame.

2 Translation:

- Along the Z axis of the Z Prismatic Primitive (Pz) base frame. This frame is coincident with the Spherical Primitive (S) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation. Because 3-D rotation occurs as a single rotation about an arbitrary 3-D axis (as opposed to three separate rotations about the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes), gimbal lock does not occur.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

Dialog Box and Parameters

Telescoping Joint : Telescoping Joint

\square
Description
Represents a telescoping joint between two frames. This joint has three rotational and one translational degrees of freedom represented by one spherical primitive and one prismatic primitive. The follower frame first rotates freely around the common frame origins as the pivot. The follower origin then translates along the follower z -axis.

In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.

Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
Properties

- Spherical Primitive (S)
\# State Targets
\pm Internal Mechanics
\pm Actuation
\pm Sensing
+ Z Prismatic Primitive (P_{z})
\pm Composite Force/Torque Sensing

Spherical Primitive: State Targets

Specify the spherical primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Low-priority targets behave as rough guides.

Value

Select a method to specify the joint primitive state target.

Method	Description
None	Constrain the base and follower frames to share the same orientation.
Aligned Axes	Set frame rotation by aligning two follower frame axes with two base frame axes.

Method	Description
Standard Axis	Specify frame rotation as an angle about a standard axis $(x, y$, or $z)$.
Arbitrary Axis	Specify frame rotation as an angle about a general $[x, y, z]$ axis.
Rotation Sequence	Specify frame rotation as a sequence of three elementary rotations.
Rotation Matrix	Specify frame rotation as a right-handed orthogonal rotation matrix.

Aligned Axes

Select two pairs of base-follower frame axes.

Parameter	Description
Pair 1	First pair of base-follower frame axes to align.
Pair 2	Second pair of base-follower frame axes to align. Axis choices depend on Pair 1 axis selections.

Standard Axis

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	Standard rotation axis (X, Y, or Z) resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Arbitrary Axis

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	General rotation axis [X Y Z] resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Rotation Sequence

Specify a sequence of three elementary rotations about the selected permutation of x, y, and z axes. These rotation sequences are also known as Euler and Tait-Bryan sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.

Parameter	Description
Rotation About	Frame whose axes to rotate the follower frame about.
Sequence	Sequence of axes about which to apply the elementary rotations.
Angles	Three-element vector with elementary rotation angles about the axes specified in the Sequence parameter.

Rotation Matrix

Specify the 3×3 transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is $[100 ; 010 ; 001]$.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields. The priority field is identical to that used for the position state target.

Value

Enter a three element vector with the angular velocity components of the follower frame with respect to the base frame. Select a physical unit. The default is deg/s (degree/second).

Resolution Frame

From the drop-down list, select a resolution frame. This is the frame in which the state target is resolved. It identifies the axes the velocity vector components apply to. The default is Follower.

Spherical Primitive: Internal Mechanics

Specify the spherical primitive internal mechanics. This includes linear spring and damping forces, accounting for energy storage and dissipation, respectively. To ignore internal mechanics, keep spring stiffness and damping coefficient values at the default value of 0 .

Equilibrium Position

Select a method to specify the spring equilibrium position. The equilibrium position is the rotation angle between base and follower port frames at which the spring torque is zero.

Method	Description
None	Constrain the base and follower frames to share the same orientation.
Aligned Axes	Set frame rotation by aligning two follower frame axes with two base frame axes.
Standard Axis	Specify frame rotation as an angle about a standard axis $(x, y$, or $z)$.
Arbitrary Axis	Specify frame rotation as an angle about a general $[x, y, z]$ axis.
Rotation Sequence	Specify frame rotation as a sequence of three elementary rotations.
Rotation Matrix	Specify frame rotation as a right-handed orthogonal rotation matrix.

[^1]Select two pairs of base-follower frame axes.

Parameter	Description
Pair 1	First pair of base-follower frame axes to align.
Pair 2	Second pair of base-follower frame axes to align. Axis choices depend on Pair 1 axis selections.

Standard Axis

Select a standard rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	Standard rotation axis (X, Y, or Z) resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Arbitrary Axis

Select a general 3-D rotation axis, resolved in the base frame, and specify the follower frame rotation angle.

Parameter	Description
Axis	General rotation axis [X Y Z] resolved in the base frame.
Angle	Follower frame rotation angle about the rotation axis with respect to the base frame.

Rotation Sequence

Specify a sequence of three elementary rotations about the selected permutation of x, y, and z axes. These rotation sequences are also known as Euler and Tait-Bryan
sequences. The rotations are those of the follower frame relative to the frame selected in the Rotate About parameter.

If you set the Rotate About parameter to Follower Frame, the follower frame rotates about its own axes. These axes change orientation with each successive rotation. If you set the Rotate About parameter to Base Frame, the follower frame rotates about the fixed base frame axes.

Parameter	Description
Rotation About	Frame whose axes to rotate the follower frame about.
Sequence	Sequence of axes about which to apply the elementary rotations.
Angles	Three-element vector with elementary rotation angles about the axes specified in the Sequence parameter.

Rotation Matrix

Specify the 3×3 transformation matrix of a proper rotation between the base and follower frames. The matrix must be orthogonal and have determinant +1 . The default matrix is $[100 ; 010 ; 001]$.

Spring Stiffness

Enter the linear spring constant. This is the torque required to displace the joint primitive by a unit angle. The term linear refers to the mathematical form of the spring equation. The default is 0 . Select a physical unit. The default is $\mathrm{N} * \mathrm{~m} / \mathrm{deg}$.

Damping Coefficient

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select a physical unit. The default is $N^{*} \mathrm{~m} /(\mathrm{deg} / \mathrm{s})$.

Spherical Primitive: Actuation

Specify actuation options for the spherical joint primitive. Actuation modes include Torque only. Selecting a torque input adds the corresponding physical signal port to the block. Use this port to specify the actuation torque signal.

Torque

Select a source for the actuation torque. The default setting is None.

Actuation Torque Setting
None
Provided by Input

Description

Apply no actuation torque.
Apply an actuation torque based on a physical signal. The signal specifies the torque acting on the follower frame with respect to the base frame. An equal and opposite torque acts on the base frame. Selecting this option exposes additional parameters.

Torque (X), Torque (Y), Torque (Z)

Select in order to actuate the spherical joint primitive about each standard Cartesian axis (X, Y, Z) separately. The block exposes the corresponding physical signal ports. Use these ports to specify the actuation torque signals. The signals must be scalar values.

Torque (XYZ)

Select in order to actuate the spherical joint primitive about an arbitrary axis [X Y Z]. The block exposes the corresponding physical signal port. Use this port to specify the actuation torque signal. The signal must be a $3-\mathrm{D}$ vector.

Frame

Select the frame to resolve the actuation torque signal in. The axes of this frame establish the directions of the X, Y, and Z torque components. The default setting is Base.

Spherical Primitive: Sensing

Select the motion variables to sense in the spherical joint primitive. The block adds the corresponding physical signal ports. Use these ports to output the numerical values of the motion variables.

The block measures each motion variable for the follower frame with respect to the base frame. It resolves that variable in the resolution frame that you select from the Frame drop-down list.

Motion Variables	Description
Position	Quaternion describing follower frame rotation with respect to base frame. The quaternion coefficients are $\left[\cos \left(\frac{\theta}{2}\right), n_{x} \sin \left(\frac{\theta}{2}\right), n_{y} \sin \left(\frac{\theta}{2}\right), n_{z} \sin \left(\frac{\theta}{2}\right)\right]$. The measurement is the same in all measurement frames.
Velocity (X), Velocity (Y), Velocity (Z)	Angular velocity components about X, Y, and Z axes.
Velocity	$3-D$ angular velocity vector with components about X, Y, and Z axes.
Acceleration (X), Acceleration (Y), Acceleration (Z)	Angular acceleration components about X, Y, and Z axes.
Acceleration	$3-\mathrm{D}$ angular acceleration vector with components about X, Y, and Z axes.

Frame

Select the frame to resolve the measurement in. The axes of this frame establish the directions of X, Y, and Z vector components. The default setting is Base.

Prismatic Primitive: State Targets

Specify the prismatic primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

Specify Position Target

Select this option to specify the desired joint primitive position at time zero. This is the relative position, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

Specify Velocity Target

Select this option to specify the desired joint primitive velocity at time zero. This is the relative velocity, measured along the joint primitive axis, of the follower frame origin with respect to the base frame origin. It is resolved in the base frame. Selecting this option exposes priority and value fields.

Priority

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.

Priority Level	Description
High (desired)	Satisfy state target precisely
Low (approximate)	Satisfy state target approximately

Note: During assembly, high-priority targets behave as exact guides. Low-
priority targets behave as rough guides.

Value

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is m for position and m / s for velocity.

Prismatic Primitive: Internal Mechanics

Specify the prismatic primitive internal mechanics. Internal mechanics include linear spring forces, accounting for energy storage, and damping forces, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

Equilibrium Position

Enter the spring equilibrium position. This is the distance between base and follower frame origins at which the spring force is zero. The default value is 0 . Select or enter a physical unit. The default is m .

Spring Stiffness

Enter the linear spring constant. This is the force required to displace the joint primitive by a unit distance. The default is 0 . Select or enter a physical unit. The default is N / m.

Damping Coefficient

Enter the linear damping coefficient. This is the force required to maintain a constant joint primitive velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is $N /(m / s)$.

Prismatic Primitive: Actuation

Specify actuation options for the prismatic joint primitive. Actuation modes include Force and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Actuation signals are resolved in the base frame.

Force

Select an actuation force setting. The default setting is None.

Actuation Force Setting	Description
None	No actuation force.
Provided by Input	Actuation force from physical signal input. The signal provides the force acting on the follower frame with respect to the base frame along the joint primitive axis. An equal and opposite force acts on the base frame.
Automatically computed	Actuation force from automatic calculation. Simscape Multibody computes and applies the actuation force based on model dynamics.

Motion

Select an actuation motion setting. The default setting is Automatically Computed.

Actuation Motion Setting	Description
Provided by Input	Joint primitive motion from physical signal input. The signal provides the desired trajectory of the follower frame with respect to the base frame along the joint primitive axis.

Actuation Motion Setting	Description
Automatically computed	Joint primitive motion from automatic calculation. Simscape Multibody computes and applies the joint primitive motion based on model dynamics.

Prismatic Primitive: Sensing

Select the variables to sense in the prismatic joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

Position

Select this option to sense the relative position of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Velocity

Select this option to sense the relative velocity of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Acceleration

Select this option to sense the relative acceleration of the follower frame origin with respect to the base frame origin along the joint primitive axis.

Actuator Force

Select this option to sense the actuation force acting on the follower frame with respect to the base frame along the joint primitive axis.

Composite Force/Torque Sensing

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

Direction

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive X, Y, and Z axes of the selected resolution frame.

Resolution Frame

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

Constraint Force

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector [fc $c_{\mathrm{x}}, f c_{\mathrm{y}}$, $f c_{\mathrm{z}}$] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

Constraint Torque

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector [$t c_{\mathrm{x}}, t c_{\mathrm{y}}$, $t c_{\mathrm{z}}$] acting at the joint. Only constraint torque components that are orthogonal to the
joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

Total Force

A joint block generally applies various forces between its port frames:

- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector $\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port ft .

Total Torque

A joint block generally applies various torques between its port frames:

- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector $\left[t t_{\mathrm{x}}, t t_{\mathrm{y}}\right.$, $\left.t t_{\mathrm{z}}\right]$. Selecting this option causes the block to expose physical signal port tt.

Ports

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

Frame Ports

- B - Base frame
- F - Follower frame

Actuation Ports

The prismatic joint primitive provides the following actuation ports:

- fz - Actuation force of the Z prismatic joint primitive
- pz - Desired trajectory of the Z prismatic joint primitive

The spherical joint primitive provides the following actuation ports:

- t - Actuation torque vector $[t x, t y, t z]$ acting on the spherical joint primitive
- tx, ty, tz - X, Y, and Z components of the actuation torque acting on the spherical joint primitive

Sensing Ports

The prismatic primitive provides the following sensing ports:

- pz — Position of the Z prismatic joint primitive
- vz - Velocity of the Z prismatic joint primitive
- az - Acceleration of the Z prismatic joint primitive
- fz - Actuation force acting on the Z prismatic joint primitive

The spherical primitive provides the following sensing ports:

- Q - Orientation of the spherical joint primitive in quaternion form
- wx, wy, wz - X, Y, and Z angular velocity components of the spherical joint primitive
- w - Angular velocity $[w x, w y, w z]$ of the spherical joint primitive
- bx, by, bz - X, Y, and Z angular acceleration components of the spherical joint primitive
- b-Angular acceleration [bx, by, bz] of the spherical joint primitive

The following sensing ports provide the composite forces and torques acting on the joint:

- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

See Also

For related blocks, see Prismatic Joint, Spherical Joint
For more information, see:

- "Motion Sensing"
- "Measurement Frames"
- "Actuating and Sensing Using Physical Signals"

Transform Sensor

Sensor that measures the spatial relationship between two frames

Library

Frames and Transforms

Description

This block represents a sensor that measures the spatial relationship between two frames. Parameters that this sensor measures include rotational and translational position, velocity, and acceleration. The sensor can measure these parameters between any two frames in a model. This block provides the broadest motion sensing capability in Simscape Multibody.

Each measurement provides the value of a parameter for the follower frame with respect to the base frame, resolved in the Measurement Frame that you choose. Measurement frames include World as well as rotating and non-rotating base and follower frames.

To output a parameter, the block provides a set of optional physical signal ports. Ports remain hidden until you select the corresponding parameters in the dialog box. Each port outputs a parameter as a time-varying physical signal. By default, measurements are in SI units. If connecting to Simulink ${ }^{\circledR}$ blocks, you can use the PS-Simulink Converter block to select a different physical unit.

Dialog Box and Parameters

Measurement Frame

Select a frame in which to resolve the selected spatial measurements. The choice of measurement frame affects the expression of a vector quantity in terms of its X, Y, and Z components. Some quantities, such as Angle, are not affected by the choice of measurement frame. For more information, see "Measurement Frames". The default is World.

Rotation

Select the rotation parameters to sense. These parameters encode the rotation operation required to bring the base frame into coincidence with the follower frame. Rotation observes the right-hand rule: with the rotation axis pointing out of the screen, counterclockwise motion defines positive rotation, while clockwise motion defines negative rotation.

Non-vector quantities require no measurement frame for resolution; these quantities are unaffected by measurement frame choice. Vector quantities, such as Axis, are always resolved in either base or follower measurement frames; the World measurement frame does not apply.

Angle

$3-\mathrm{D}$ rotation angle of the follower frame with respect to the base frame. Selecting Angle exposes physical signal port \mathbf{q}.

Axis

Vector components of the normalized rotation axis. The output is a three-element vector with the X, Y, and Z axis components resolved in the measurement frame. Selecting Axis exposes physical signal port axs.

Quaternion

Unit quaternion that describes the pure rotation of the follower frame with respect to the base frame. The output is a four-element vector with the scalar (S) and vector (V_{x}, V_{y}, V_{z}) quaternion coefficients. The vector provides the coefficients in the order [$S V_{x}$ $\left.V_{y} V_{z}\right]$. Selecting Quaternion exposes physical signal port \mathbf{Q}.

Transform

Transform matrix that describes the pure rotation of the follower frame with respect to the base frame. The output is a nine-element, 3×3 matrix. Selecting Transform exposes physical signal port \mathbf{R}.

Angular Velocity

Select the angular velocity parameters to sense. The parameters encode the angular velocity of the follower frame with respect to the base frame, resolved in the measurement frame. Rotation observes the right-hand rule: with the rotation axis pointing out of the screen, counterclockwise motion defines positive rotation, while clockwise motion defines negative rotation.

Omega X/Omega Y/Omega Z

Relative angular velocities about the X, Y, and Z axes of the base frame. Selecting Omega X, Omega Y, and Omega Z exposes physical signal ports wx, wy, and wz.

Quaternion

Unit quaternion that describes the angular velocity of the follower frame with respect to the base frame. The output is a four-element vector with the scalar (S) and vector $\left(V_{x}, V_{y}, V_{z}\right.$) quaternion coefficients. The vector provides the coefficients in the order [S $\left.V_{x} V_{y} V_{z}\right]$. Selecting Quaternion exposes physical signal port Qd.

Transform

Transform matrix that describes the angular velocity of the follower frame with respect to the base frame. The output is a nine-element, 3×3 matrix. Selecting Transform exposes physical signal port Rd.

Angular Acceleration

Select the angular acceleration parameters to sense. The parameters encode the angular acceleration of the follower frame with respect to the base frame, resolved in the measurement frame. Rotation observes the right-hand rule: with the rotation axis pointing out of the screen, counterclockwise motion defines positive rotation, while clockwise motion defines negative rotation.

Alpha X/Alpha Y/Alpha Z

Relative angular accelerations about the X, Y, and Z axes of the base frame. Selecting Alpha X, Alpha Y, and Alpha Z exposes physical signal ports bx, by, and bz.

Quaternion

Unit quaternion that describes the angular acceleration of the follower frame with respect to the base frame. The output is a four-element vector with the scalar (S) and vector $\left(V_{x}, V_{y}, V_{z}\right)$ quaternion coefficients. The vector provides the coefficients in the order [$S V_{x} V_{y} V_{z}$]. Selecting Quaternion exposes physical signal port Qdd.

Transform

Transform matrix that describes the angular acceleration of the follower frame with respect to the base frame. The output is a nine-element, 3×3 matrix. Selecting Transform exposes physical signal port Rdd.

Translation

Select the translation parameters to sense. The parameters encode the translation of the follower frame with respect to the base frame, resolved in the measurement frame.

X/Y/Z

Offset vector from the base frame origin to the follower frame origin along the X, Y, and Z axes. Selecting \mathbf{X}, \mathbf{Y}, and \mathbf{Z} exposes physical signal ports \mathbf{x}, \mathbf{y}, and \mathbf{z}.

Radius

Standard radius coordinate found in cylindrical coordinate systems. This radius is the shortest distance from the base frame Z axis to the follower frame origin. The value of the radius is always greater than or equal to zero. Selecting Radius exposes physical signal port rad.

The figure shows the cylindrical translation parameters Z, Radius, and Azimuth.

Azimuth

Standard azimuth coordinate found in cylindrical and spherical coordinate systems. The azimuth is the angle from the base frame +X axis to the projection of the ray
connecting base to follower frame origins onto the base frame XY plane. The angle measurement observes the right-hand rule. The azimuth falls in the range $\left[-180^{\circ}\right.$, $\left.+180^{\circ}\right]$. If base and follower frame origins coincide with each other, the azimuth is undefined. Selecting Azimuth exposes sensing port azm.

Distance

Standard radius found in spherical coordinate systems. This is the distance from the origin of the base frame to the origin of the follower frame. This distance is always equal to or greater than zero. Selecting Distance exposes sensing port dst.

The figure shows the spherical translation parameters Azimuth, Distance, and Inclination.

Inclination

Standard inclination found in spherical coordinate systems. The inclination is the angle of the ray connecting base to follower frame origins with respect to the projection of this ray onto the base frame XY plane. The angle measurement observes the right-hand rule. The inclination falls in the range $\left[-90^{\circ},+90^{\circ}\right]$. If base
and follower frame origins coincide with each other, the inclination is undefined. Selecting Inclination exposes sensing port inc.

Velocity

Select the linear velocity parameters to sense. The parameters encode the linear velocity of the follower frame with respect to the base frame, resolved in the measurement frame. Differentiation of a translation parameter occurs in measurement coordinates, after that parameter is resolved in the chosen measurement frame.

X/Y/Z

Relative linear velocities along the X, Y, and Z axes. Selecting X, Y, and Z exposes physical signal ports $\mathbf{v x}, \mathbf{v y}$, and $\mathbf{v z}$.

Radius

Time rate of change of the Radius coordinate defined under Translation. Selecting Radius exposes physical signal port vrad.

Azimuth

Time rate of change of the Azimuth coordinate defined under Translation.
Selecting Azimuth exposes physical signal port vazm.

Distance

Time rate of change of the Distance coordinate defined under Translation. Selecting Distance exposes physical signal port vdst.

Inclination

Time rate of change of the Inclination coordinate defined under Translation. Selecting Inclination exposes physical signal port vinc.

Acceleration

Select the linear acceleration parameters to sense. The parameters encode the linear acceleration of the follower frame with respect to the base frame, resolved in the measurement frame. Differentiation of a translation parameter occurs in measurement coordinates, after that parameter is resolved in the chosen measurement frame.

X/Y/Z

Relative linear accelerations along the X, Y, and Z axes. Selecting X, Y, and Z exposes physical signal ports ax, ay, and az.

Radius

Second time-derivative of the Radius coordinate defined under Translation. Selecting Radius exposes physical signal port arad.

Azimuth

Second time-derivative of the Azimuth coordinate defined under Translation. Selecting Azimuth exposes physical signal port aazm.

Distance

Second time-derivative of the Distance coordinate defined under Translation. Selecting Distance exposes physical signal port adst.

Inclination

Second time-derivative of the Inclination coordinate defined under Translation. Selecting Inclination exposes physical signal port ainc.

Ports

The block contains frame ports B and F, representing base and follower frames, respectively.

See Also

Rigid Transform

More About

- "Working with Frames"
- "Motion Sensing"
- "Representing Frames"

Universal Joint

Joint with two revolute primitives

Library

Joints

Description

This block represents a joint with two rotational degrees of freedom. Two revolute primitives provide the two rotational degrees of freedom. The base and follower frame origins remain coincident during simulation.

Joint Degrees of Freedom

The joint block represents motion between the base and follower frames as a sequence of time-varying transformations. Each joint primitive applies one transformation in this sequence. The transformation translates or rotates the follower frame with respect to the joint primitive base frame. For all but the first joint primitive, the base frame coincides with the follower frame of the previous joint primitive in the sequence.

At each time step during the simulation, the joint block applies the sequence of timevarying frame transformations in this order:

1 Rotation:

a About the X axis of the X Revolute Primitive (Rx) base frame.
b About the Y axis of the Y Revolute Primitive (Ry) base frame. This frame is coincident with the X Revolute Primitive (Rx) follower frame.

The figure shows the sequence in which the joint transformations occur at a given simulation time step. The resulting frame of each transformation serves as the base frame for the following transformation.

Joint Transformation Sequence

A set of optional state targets guide assembly for each joint primitive. Targets include position and velocity. A priority level sets the relative importance of the state targets. If two targets are incompatible, the priority level determines which of the targets to satisfy.

Internal mechanics parameters account for energy storage and dissipation at each joint primitive. Springs act as energy storage elements, resisting any attempt to displace the joint primitive from its equilibrium position. Joint dampers act as energy dissipation elements. Springs and dampers are strictly linear.

Each joint primitive has a set of optional actuation and sensing ports. Actuation ports accept physical signal inputs that drive the joint primitives. These inputs can be forces and torques or a desired joint trajectory. Sensing ports provide physical signal outputs that measure joint primitive motion as well as actuation forces and torques. Actuation modes and sensing types vary with joint primitive.

Dialog Box and Parameters

```
Universal Joint: Universal Joint
\square\square回 - 星
Description
Represents a universal joint between two frames. This joint has two rotational degree of freedom represented by two revolute primitives along a set of mutually orthogonal axes. This joint constrains the origins of the two frames of be coincident. It prohibits any relative rotation or translation in the plane of the primitives. The follower frame rotates first around the follower \(x\)-axis, then around the follower \(y\)-axis.
In the expandable nodes under Properties, specify the state, actuation method, sensing capabilities, and internal mechanics of the primitives of this joint. After you apply these settings, the block displays the corresponding physical signal ports.
Ports B and F are frame ports that represent the base and follower frames, respectively. The joint direction is defined by motion of the follower frame relative to the base frame.
```


Properties

```
- X Revolute Primitive (Rx)
\(\pm\) State Targets
\(\pm\) Internal Mechanics
\(\pm\) Actuation
\(\pm\) Sensing
+ Y Revolute Primitive (Ry)
+ Composite Force/Torque Sensing

\section*{Revolute Primitive: State Targets}

Specify the revolute primitive state targets and their priority levels. A state target is the desired value for one of the joint state parameters-position and velocity. The priority level is the relative importance of a state target. It determines how precisely the target must be met. Use the Model Report tool in Mechanics Explorer to check the assembly status for each joint state target.

\section*{Specify Position Target}

Select this option to specify the desired joint primitive position at time zero. This is the relative rotation angle, measured about the joint primitive axis, of the follower frame with respect to the base frame. The specified target is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Specify Velocity Target}

Select this option to specify the desired joint primitive velocity at time zero. This is the relative angular velocity, measured about the joint primitive axis, of the follower frame with respect to the base frame. It is resolved in the base frame. Selecting this option exposes priority and value fields.

\section*{Priority}

Select state target priority. This is the importance level assigned to the state target. If all state targets cannot be simultaneously satisfied, the priority level determines which targets to satisfy first and how closely to satisfy them. This option applies to both position and velocity state targets.
\begin{tabular}{|l|l|}
\hline Priority Level & Description \\
\hline High (desired) & Satisfy state target precisely \\
\hline Low (approximate) & Satisfy state target approximately \\
\hline
\end{tabular}

Note: During assembly, high-priority targets behave as exact guides. Lowpriority targets behave as rough guides.

\section*{Value}

Enter the state target numerical value. The default is 0 . Select or enter a physical unit. The default is deg for position and deg/s for velocity.

\section*{Revolute Primitive: Internal Mechanics}

Specify the revolute primitive internal mechanics. Internal mechanics include linear spring torques, accounting for energy storage, and linear damping torques, accounting for energy dissipation. You can ignore internal mechanics by keeping spring stiffness and damping coefficient values at 0 .

\section*{Equilibrium Position}

Enter the spring equilibrium position. This is the rotation angle between base and follower frames at which the spring torque is zero. The default value is 0 . Select or enter a physical unit. The default is deg.

\section*{Spring Stiffness}

Enter the linear spring constant. This is the torque required to rotate the joint primitive by a unit angle. The default is 0 . Select or enter a physical unit. The default is \(N * m / d e g\).

\section*{Damping Coefficient}

Enter the linear damping coefficient. This is the torque required to maintain a constant joint primitive angular velocity between base and follower frames. The default is 0 . Select or enter a physical unit. The default is \(N * m /(d e g / s)\).

\section*{Revolute Primitive: Actuation}

Specify actuation options for the revolute joint primitive. Actuation modes include Torque and Motion. Selecting Provided by Input from the drop-down list for an actuation mode adds the corresponding physical signal port to the block. Use this port to specify the input signal. Input signals are resolved in the base frame.

\section*{Torque}

Select an actuation torque setting. The default setting is None.
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline None & No actuation torque. \\
\hline Provided by Input & \begin{tabular}{l} 
Actuation torque from physical signal \\
input. The signal provides the torque \\
acting on the follower frame with \\
respect to the base frame about the joint \\
primitive axis. An equal and opposite \\
torque acts on the base frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Actuation Torque Setting & Description \\
\hline Automatically computed & \begin{tabular}{l} 
Actuation torque from automatic \\
calculation. Simscape Multibody \\
computes and applies the actuation \\
torque based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Motion}

Select an actuation motion setting. The default setting is Automatically Computed.
\begin{tabular}{|l|l|}
\hline Actuation Motion Setting & Description \\
\hline Provided by Input & \begin{tabular}{l} 
Joint primitive motion from physical \\
signal input. The signal provides the \\
desired trajectory of the follower frame \\
with respect to the base frame along the \\
joint primitive axis.
\end{tabular} \\
\hline Automatically computed & \begin{tabular}{l} 
Joint primitive motion from automatic \\
calculation. Simscape Multibody \\
computes and applies the joint primitive \\
motion based on model dynamics.
\end{tabular} \\
\hline
\end{tabular}

\section*{Revolute Primitive: Sensing}

Select the variables to sense in the revolute joint primitive. Selecting a variable exposes a physical signal port that outputs the measured quantity as a function of time. Each quantity is measured for the follower frame with respect to the base frame. It is resolved in the base frame. You can use the measurement signals for analysis or as input in a control system.

\section*{Position}

Select this option to sense the relative rotation angle of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Velocity}

Select this option to sense the relative angular velocity of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Acceleration}

Select this option to sense the relative angular acceleration of the follower frame with respect to the base frame about the joint primitive axis.

\section*{Actuator Torque}

Select this option to sense the actuation torque acting on the follower frame with respect to the base frame about the joint primitive axis.

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint
force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector \(\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.\), \(f c_{\mathrm{z}}\) ] acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector [ \(t c_{\mathrm{x}}, t c_{\mathrm{y}}\), \(t c_{z}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [tt \(t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(t t_{\mathrm{z}}\) ]. Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for specifying actuation inputs and sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B-Base frame
- F - Follower frame

\section*{Actuation Ports}

The revolute joint primitives provide the following actuation ports:
- tx, ty - Actuation torques acting on the X and Y revolute joint primitives
- qx, qy - Desired rotations of the X and Y revolute joint primitives

\section*{Sensing Ports}

The revolute joint primitives provide the following sensing ports:
- qx, qy - Angular positions of the X and Y revolute joint primitives
- wx, wy - Angular velocities of the X and Y revolute joint primitives
- bx, by - Angular accelerations of the X and Y revolute joint primitives
- tx, ty - Actuation torques acting on the X and Y revolute joint primitives

The following sensing ports provide the composite forces and torques acting on the joint:
- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Revolute Joint| Gimbal Joint

\section*{More About}
- "Actuating and Sensing Using Physical Signals"
- "Motion Sensing"
- "Rotational Measurements"

\section*{Weld Joint}

Joint with zero primitives

\section*{Library}

Joints

\section*{Description}


This block represents a joint with zero degrees of freedom. It contains no joint primitives. Base and follower frames, each connected to a separate rigid body, are coincident for all time. The block dialog box provides sensing options for constraint and total forces and torques.


Translational Degree of Freedom Rotational Degree of Freedom

Joint Degrees of Freedom

\section*{Dialog Box and Parameters}
\begin{tabular}{l}
\(\perp\) Weld Joint : Weld Joint \\
\begin{tabular}{l} 
Description \\
Represents a weld joint between two frames. This joint has \\
zero degrees of freedom. The follower and base frames are \\
always coincident. \\
Ports B and F are frame ports that represent the base and \\
follower frames, respectively. \\
Properties \\
\begin{tabular}{ll|l|}
\hline - Composite Force/Torque Sensing \\
\hline Direction & Follower on Base \\
\hline Resolution Frame & Base \\
\hline Constraint Force & \(\square\) \\
\hline Constraint Torque & \(\square\) \\
\hline Total Force & \(\square\) \\
\hline Total Torque & \(\square\) & \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Composite Force/Torque Sensing}

Select the composite, or joint-wide, forces and torques to sense. These are forces and torques that act not at individual joint primitives but at the whole joint. Options include constraint and total forces and torques.

During simulation, the block computes the selected composite forces and torques acting between the base and follower port frames. It outputs these variables using physical signal output ports. Check the port labels to identify the output variables at different ports.

\section*{Direction}

Forces and torques acting at joints do so in pairs. Newton's third law of motion requires that every action be accompanied by an equal and opposite reaction. If the base frame of a joint exerts a force or torque on the follower frame, then the follower frame must exert an equal and opposite force or torque on the base frame.

Select whether to sense the composite forces and torques exerted by the base frame on the follower frame or vice versa. The force and torque vector components are positive if they point along the positive \(\mathrm{X}, \mathrm{Y}\), and Z axes of the selected resolution frame.

\section*{Resolution Frame}

You can resolve a vector quantity into Cartesian components in different frames. If the resolution frames have different orientations, then the measured components are themselves different-even though the vector quantity remains the same.

Select the frame in which to resolve the sensed force and torque variables. Possible resolution frames include Base and Follower. The block outputs the Cartesian components of the sensed force and torque vectors as observed in this frame.

\section*{Constraint Force}

Joint blocks with fewer than three translational degrees of freedom forbid motion along one or more axes. For example, the Gimbal Joint block forbids translation along all axes. To prevent translation along an axis, a joint block applies a constraint force between its base and follower port frames. Constraint forces are orthogonal to joint translation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint force vector \(\left[f c_{\mathrm{x}}, f c_{\mathrm{y}}\right.\), \(\left.f c_{z}\right]\) acting at the joint. Only constraint force components that are orthogonal to the joint translational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port fc.

\section*{Constraint Torque}

Joint blocks with fewer than three rotational degrees of freedom forbid motion about one or more axes. For example, the Cartesian Joint block forbids rotation about all axes. To prevent rotation about an axis, a joint block applies a constraint torque between its base and follower port frames. Constraint torques are orthogonal to joint rotation axes and therefore do no work.

Select the check box to compute and output the 3-D constraint torque vector \(\left[t c_{\mathrm{x}}, t c_{\mathrm{y}}\right.\), \(t c_{\mathrm{z}}\) ] acting at the joint. Only constraint torque components that are orthogonal to the joint rotational degrees of freedom have nonzero values. Selecting this option causes the block to expose physical signal port tc.

\section*{Total Force}

A joint block generally applies various forces between its port frames:
- Actuation forces that drive prismatic joint primitives.
- Internal spring and damper forces that resist motion at prismatic joint primitives.
- Constraint forces that forbid motion in directions orthogonal to prismatic joint primitives.

The net sum of the different force components equals the total force acting between the joint port frames. Select the check box to compute and output the 3-D total force vector \(\left[f t_{\mathrm{x}}, f t_{\mathrm{y}}, f t_{\mathrm{z}}\right]\). Selecting this option causes the block to expose physical signal port ft .

\section*{Total Torque}

A joint block generally applies various torques between its port frames:
- Actuation torques that drive revolute or spherical joint primitives.
- Internal spring and damper torques that resist motion at revolute or spherical joint primitives.
- Constraint torques that forbid motion in directions orthogonal to the revolute or spherical joint primitive axes.

The net sum of the different torque components equals the total torque acting at a joint. Select the check box to compute and output the 3-D total torque vector [ \(t t_{\mathrm{x}}, t t_{\mathrm{y}}\), \(t t_{\mathrm{z}}\) ]. Selecting this option causes the block to expose physical signal port tt.

\section*{Ports}

This block has two frame ports. It also has optional physical signal ports for sensing dynamical variables such as forces, torques, and motion. You expose an optional port by selecting the sensing check box corresponding to that port.

\section*{Frame Ports}
- B - Base frame
- F - Follower frame

\section*{Sensing Ports}

The following sensing ports provide the composite forces and torques acting on the joint:
- fc - Constraint force
- tc - Constraint torque
- ft - Total force
- tt - Total torque

\section*{See Also}

Rigid Transform

\section*{World Frame}

\author{
Inertial reference frame
}

\section*{Library}

Frames and Transforms

\section*{Description}


This block represents the global reference frame in a model. This frame is inertial and at absolute rest. Rigidly connecting a frame to the World frame makes that frame inertial. Frame axes are orthogonal and arranged according to the right-hand rule.

In a frame network, the World frame is the ultimate reference frame. Directly or indirectly, all other frames are defined with respect to the World frame. If multiple World Frame blocks connect to the same frame network, those blocks identify the same frame. If no World Frame block connects to a frame network, a copy of an existing frame, frozen in its initial position and orientation, serves as the World frame.

\section*{Dialog Box and Parameters}
```

/m World Frame: World Frame
\square\square回 x
Description
Provides access to the world or ground frame, a unique motionless, orthogonal, right-handed coordinate frame predefined in any mechanical model. World frame is the ground of all frame networks in a mechanical model.
A model can have multiple World Frame blocks, but all represent the same frame.
Port W is a frame port identified with the world frame. Any frame port directly connected to W is also identified with the world frame.

```

Ports
This block contains frame port W, representing the World frame.

\section*{See Also}

Reference Frame | Rigid Transform

\section*{More About}
- "World and Reference Frames"
- "Representing Frames"

\section*{Configuration Parameters}
- "Simscape Multibody Pane: General" on page 2-2
- "Simscape Multibody Pane: Diagnostics" on page 2-3
- "Simscape Multibody Pane: Explorer" on page 2-13

\section*{Simscape Multibody Pane: General}

The SimMechanics Second Generation (2G) configuration parameters are arranged into the following sections:

Diagnostics
This section contains configurable diagnostic messages. The messages can be configured to be ignored or to be reported as warnings or errors. Errors will prevent simulation while warnings will allow simulation to proceed. The Mechanics Explorer (if selected) will be opened and visualization shown in all cases.

Explorer
This section contains parameters that configure the Mechanics Explorer.

\section*{Simscape Multibody Pane Overview}

Configure the mechanical settings for an entire Simscape Multibody model.

\section*{Configuration}
- This pane appears only if your model contains at least one block from the Simscape product or a product based on the Simscape product, such as the Simscape Multibody product.
- The settings in this pane are saved only if your model contains at least one Simscape Multibody block.

\section*{Simscape Multibody Pane: Diagnostics}
\begin{tabular}{lr|}
\hline Evaluation \\
Invalid visual properties: & warning - \\
Repeated vertices in a cross-section: & warning - \\
\hline Topology & \\
\hline Unconnected frame port: & warning - \\
\hline Redundant block: & warning - \\
\hline Conflicting reference frames: & \\
\hline Rigidly constrained block: & \\
\hline Assembly & warning \\
\hline Unsatisfied high priority state targets: & \\
\hline Overspecified targets in kinematic loops: & error \\
\hline
\end{tabular}

\section*{In this section...}
"Invalid visual properties" on page 2-4
"Repeated vertices in a cross-section" on page 2-5
"Unconnected frame port" on page 2-6
"Unconnected Geometry port" on page 2-6
"Redundant block" on page 2-8
"Conflicting reference frames" on page 2-9
"Rigidly constrained block" on page 2-10
"Unsatisfied high priority state targets" on page 2-11
"Overspecified targets in kinematic loops" on page 2-12

\section*{Invalid visual properties}

Select the diagnostic action to take if the application detects an improperly specified color vector.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsInvalidVisualProperty
Type: string
Value: none | warning | error
Default: warning

\section*{Repeated vertices in a cross-section}

Select the diagnostic action to take if the application detects repeated vertices in a crosssection.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsCrossSectionNullEdge
Type: string
Value: none | warning | error
Default: warning

\section*{Unconnected frame port}

Select the diagnostic action to take if the application detects an unconnected frame port.

\section*{Settings}

Default: Warning
none
The application does not check for this situation.

\section*{warning}

When the application detects this situation, it displays a warning.
error
When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsUnconnectedFramePorts
Type: string
Value: none | warning | error
Default: warning

\section*{Unconnected Geometry port}

Select the diagnostic action to take if the application detects an unconnected geometry port.

\section*{Settings}

Default: Warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.
error
When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsUnconnectedGeometryPorts
Type: string
Value: none | warning | error
Default: warning

\section*{Redundant block}

Select the diagnostic action to take if the application detects a redundant block in the model.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsRedundantBlock
Type: string
Value: none | warning | error
Default: warning

\section*{Conflicting reference frames}

Select the diagnostic action to take if the application detects conflicting reference frames in the model.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsConflictingReferenceFrames
Type: string
Value: none | warning | error
Default: warning

\section*{Rigidly constrained block}

Select the diagnostic action to take if the application detects a rigidly constrained block in the model.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsRigidlyBoundBlock
Type: string
Value: none | warning | error
Default: error

\section*{Unsatisfied high priority state targets}

Select the diagnostic action to take if the application detects targets with unsatisfied desired states in the model.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsUnsatisfiedHighPriorityTargets
Type: string
Value: none | warning | error
Default: warning

\section*{Overspecified targets in kinematic loops}

Select the diagnostic action to take if the application detects overspecified targets contained in kinematic loops in the model.

\section*{Settings}

Default: warning
none
The application does not check for this situation.
warning
When the application detects this situation, it displays a warning.

\section*{error}

When the application detects this situation, it terminates the simulation and displays an error message.

\section*{Command-Line Information}

Parameter: SimMechanicsJointTargetOverSpecification
Type: string
Value: none | warning | error
Default: error

\section*{Simscape Multibody Pane: Explorer}

\section*{Open Mechanics Explorer on model update or simulation}

\section*{Open Mechanics Explorer on model update or simulation}

Start Mechanics Explorer when model is updated or simulated.

\section*{Settings}

Default: on
\(\checkmark\) On
Model Explorer starts when model is updated or simulated.
Off
Model Explorer does not start when model is updated or simulated.

\section*{Tip}

If you clear this check box, you can start Model Explorer by selecting Desktop > Mechanics Explorers from the MATLAB \({ }^{\circledR}\) Command Window.

Command-Line Information
Parameter: SimMechanicsOpenEditorOnUpdate
Type: string
Value: 'on' | 'off'
Default: 'on'

\section*{Simscape Multibody Visualization}
- "Visualization with Mechanics Explorer" on page 3-2
- "Menu and Tool Bars" on page 3-7
- "Tree View and Property Panes" on page 3-10
- "Context Menu Display Controls" on page 3-12
- "Animation Toolstrip" on page 3-13
- "Global and Dynamic Cameras" on page 3-16

\section*{Visualization with Mechanics Explorer}
```

In this section...
"Introduction to Mechanics Explorer" on page 3-2
"Visualization Requirements" on page 3-4
"Configure Mechanics Explorer for Automatic Start-Up" on page 3-4
"Open Mechanics Explorer" on page 3-4

```

\section*{Introduction to Mechanics Explorer}

Mechanics Explorer is a tool used to visualize and animate mechanical models in Simscape Multibody. This tool provides you the entire visualization functionality available through Simscape Multibody. With it, you can visualize your model in its initial state and simulate it as a function of time.


Mechanics Explorer is the primary visualization tool of Simscape Multibody. This tool contains the following panes:
\begin{tabular}{|l|l|}
\hline Pane & Purpose \\
\hline Visualization pane & \begin{tabular}{l} 
Displays a 3-D representation of a \\
Simscape Multibody model
\end{tabular} \\
\hline Tree view pane & Displays the model component hierarchy \\
\hline Property pane & Displays selected component properties \\
\hline
\end{tabular}

\section*{Visualization Requirements}

To visualize a model in Simscape Multibody, you must have Silicon Graphics OpenGL \({ }^{\circledR}\) installed in your system.

\section*{Configure Mechanics Explorer for Automatic Start-Up}

By default, when you update or simulate a model, Simscape Multibody opens a new Mechanics Explorer window. It is in this window that Simscape Multibody displays your model. If the configuration settings have changed, you may need to reconfigure Mechanics Explorer for automatic start-up. To do this:

1 In the Simulink Editor window containing your model, select Simulation \(>\) Model Configuration Parameters.
2 In the Configuration dialog box, select Simscape Multibody > Explorer.
3 Check the Open Mechanics Explorer on model update or simulation box.
Mechanics Explorer is now configured for automatic start-up. Updating or simulating a mechanical model from the Simulink Editor window causes a Mechanics Explorer window to open.

\section*{Open Mechanics Explorer}

With Mechanics Explorer configured to start automatically, you do not have to manually open a Mechanics Explorer window. Simply follow the procedure for updating or simulating a model and, if a Mechanics Explorer window is not yet open, a new window opens up.

\section*{Open Mechanics Explorer for Model Update}

1 In the Simulink Editor window containing your model, select Simulation > Update Diagram. Alternatively, on your keyboard, press Ctrl+D.

2 A Mechanics Explorer window opens, displaying your model in its initial state.


\section*{Open Mechanics Explorer for Model Simulation}

1 In the Simulink Editor window containing your model, select Simulation \(>\) Run. Alternatively, on your keyboard press Ctrl+T or, in the Simulink Editor toolbar, press the Run button
2 A Mechanics Explorer window opens. The window displays a 3-D animation of the model.

Note: Each Mechanics Explorer window is named after the model it displays. E.g. Mechanics Explorer-sm_four_bar.

\section*{Menu and Tool Bars}

\section*{In this section... \\ "Menu Bar" on page 3-7 \\ "Toolbar" on page 3-8}

Mechanics Explorer provides you menu and tool bars for easy access to tools, including simulation and visualization tools. These two bars contain the majority of the tools which you can use with Simscape Multibody. Some of the tools provided by the Menu and Tool bars are also accessible in the contest-sensitive menu, which you can open by rightclicking the visualization window in Mechanics Explorer.

\section*{Menu Bar}

The Menu bar contains eight menu items, on the left end of the bar, and three desktop control icons, on the right end of the bar.


\section*{Menu Items}
\begin{tabular}{|l|l|}
\hline Menu ltem & Function \\
\hline File & Open and close a file, import and save data \\
\hline Explorer & \begin{tabular}{l} 
Save and close a Mechanics Explorer \\
window
\end{tabular} \\
\hline Simulation & Start and stop a simulation \\
\hline View & Select and modify a model viewpoint \\
\hline Tools & \begin{tabular}{l} 
Troubleshoot a model and record an \\
animation
\end{tabular} \\
\hline Desktop & \begin{tabular}{l} 
Dock and undock a Mechanics Explorer \\
window, show and hide the Mechanics \\
Explorer toolbar
\end{tabular} \\
\hline Window & Configure Mechanics Explorer window \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Menu Item & Function \\
\hline Help & \begin{tabular}{l} 
Search MathWorks documentation for \\
Mechanics Explorer or other product help
\end{tabular} \\
\hline
\end{tabular}

Desktop Control Icons
\begin{tabular}{|l|l|}
\hline Desktop Control Icon & Function \\
\hline Dock Mechanics Explorers \(\boldsymbol{~}\) & \begin{tabular}{l} 
Open Mechanics Explorer window inside \\
the MATLAB window
\end{tabular} \\
\hline Undock Mechanics Explorers \(\boldsymbol{\nwarrow}\) & \begin{tabular}{l} 
Open Mechanics Explorer outside the \\
MATLAB window
\end{tabular} \\
\hline Close Mechanics Explorers \(\times\) & Close active Mechanics Explorer window \\
\hline
\end{tabular}

\section*{Toolbar}

The Tool bar contains nine sections.
\begin{tabular}{|c|c|}
\hline Toolbar Icons & Function \\
\hline 㳦閶 & \begin{tabular}{l}
- Save Mechanics Explorer configuration to model \\
- Restore Mechanics Explorer configuration from model
\end{tabular} \\
\hline - - * & \begin{tabular}{l}
- Start simulation \\
- Stop simulation \\
- Update model block diagram
\end{tabular} \\
\hline  & \begin{tabular}{l}
- Fit to view \\
- Front view \\
- Back view \\
- Top view \\
- Bottom view \\
- Left view \\
- Right view \\
- Isometric view
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Toolbar Icons & Function \\
\hline 田田田 & \begin{tabular}{l}
－Split the visualization pane into four screens \\
－Use a single full－sized visualization window \\
－Split the visualization pane vertically into two screens \\
－Split the visualization pane horizontally into two screens
\end{tabular} \\
\hline View convention： Z up（＠Y Top） & －Change default frame orientation． Choices include Z Up，Z Down，and Y up． \\
\hline  & \begin{tabular}{l}
－Change background color of visualization window \\
－Select model component \\
－Rotate model \\
－Pan model \\
－Zoom model \\
－Zoom model region
\end{tabular} \\
\hline \(\square 0\) & \begin{tabular}{l}
－Show model frames \\
－Show model Center－of－Masses
\end{tabular} \\
\hline \％ & －Record movie of animation \\
\hline 田円日（1） & \begin{tabular}{l}
－Tile multiple Mechanics Explorer windows into a four－matrix \\
－Tile multiple Mechanics Explorer windows into two vertical windows \\
－Tile multiple Mechanics Explorer windows into two horizontal windows \\
－Maximize active Mechanics Explorer window to occupy entire region of visualization window
\end{tabular} \\
\hline
\end{tabular}

\section*{Tree View and Property Panes}
```

In this section...
"Introduction to Tree View and Property Panes" on page 3-10
"Browse Model" on page 3-10

```

Mechanics Explorer contains Tree View and Property panes so that you can navigate a model and explore model parameters.

\section*{Introduction to Tree View and Property Panes}

By default, Mechanics Explorer displays both a Tree View pane and a Property pane. With these panes, you can navigate the subsystem and block hierarchy of a model. You can also view the properties of any block in the model.

The Tree View browser helps you navigate a mechanical model by organizing blocks into a hierarchical structure. You can select a subsystem in your model, and examine any of its constituent blocks. If a subsystem is in turn built from other subsystems, you can select the new subsystem of interest, and navigate to any of its constituent blocks, all from the model browser. You can also expand any single block to examine any of its frames.

The Property pane displays the properties of the component that you selected in the Tree View browser. If the component is a block, the pane displays the dialog box parameters for that block. If the component is a frame port, the pane displays other frame ports that directly connect to the selected frame port.

\section*{Browse Model}

Use the Tree View pane to highlight a component and its associated frames in the visualization window, or to view its properties:

1 In the Tree View pane, select the component you wish to analyze:
- The selected component and all associated frames are highlighted in the visualization window
- The properties of the selected component are displayed in the property viewer

2 Click the expandable menu for the selected component, displaying its frames.

3 Select the frame you wish to examine:
- Only the selected frame is highlighted in the visualization window
- All frames which connect to the selected frame are highlighted in the property viewer

\section*{Context Menu Display Controls}

You can right-click the visualization pane to open a context menu, giving you quick access to commonly used visualization and animation tools. The following figure shows an open context menu in a Mechanics Explorer window. You can also access each of these tools from the Mechanics Explorer toolbar. For more information about context menu options, see "Menu and Tool Bars" in this reference documentation.


\section*{Animation Toolstrip}
```

In this section...
"Requirements for Animation Recording and Playback" on page 3-13
"How Animation and Playback Work" on page 3-13
"Play Control Buttons" on page 3-14
"Slider and Loop Controls" on page 3-14
"Playback Speed Control" on page 3-15
"Playback Time Counter" on page 3-15

```

\section*{Requirements for Animation Recording and Playback}
- With Simscape Multibody visualization, you record simulation animations in Microsoft Audio Video Interleave \({ }^{\circledR}\) (AVI) format.
- Animations are recorded as compressed AVI files by the MATLAB VideoWriter class using the default Motion JPEG codec, which is available on most operating systems.
- Simscape Multibody visualization does not support uncompressed AVI recording.
- To play back AVI files, you need an AVI-compatible media application.
- You can use an external AVI-compatible player.
- Alternatively, use the MATLAB VideoReader class and its read method instead.

\section*{How Animation and Playback Work}

Animation is cached during model simulation. What you see during simulation is the animation playback, unless the simulation is slower than the animation caching. In that case, the animation goes no faster than the simulation can produce the cache.

Once a partial or complete animation is cached from simulation, starting the animation again plays back the cache, without running the simulation a second time.
- While simulating for the first time, you can go back to previous animation time steps (already cached), but not forward in time.
- When playing back second, third, etc., time, you can go backward and forward to any time in the cached animation.
- Animation is cached on a per-session basis. This cache is lost when you close your visualization window session.
- Creating a video as a permanent record on your file system outside of MATLAB saves the cached animation permanently.


\section*{Play Control Buttons}

Use the play control buttons to play and stop an animation, skip a step, or reset it to the beginning:
\begin{tabular}{|l|l|}
\hline Play Control Button & Description \\
\hline Start/Stop & Start/stop the cached animation \\
\hline Reset & \begin{tabular}{l} 
Move the animation playback time back to \\
zero
\end{tabular} \\
\hline Forward Step & Skip forward in time \\
\hline Back Step & Skip backward in time \\
\hline
\end{tabular}

\section*{Slider and Loop Controls}

\section*{Slider Control}

The Slider control moves the animation playback time to an arbitrary point in the animation. The Playback time counter displays the resulting playback time.
- If the animation is not running, moving the Slider control changes the animation time from one fixed time to another.
- If the animation is running, moving the Slider control changes the animation time to whatever time you stop the slider. But the animation then continues running from that time.

Without manual control, the Slider control indicates how far in relative time the cached animation has played.

\section*{Loop Control}

You use the loop control button to automatically replay an animation from the start once it reaches the end. When you click this button, the cached animation replays indefinitely until you click the Stop button.

The Loop control is disabled by default. Enable looping by clicking this button. Disable looping by clicking it again.

\section*{Simulation Progress Bar}

The Simulation progress bar indicates how far in time the model simulation has proceeded, as opposed to how far in time the cached animation has played.

Fast models complete simulation before the cached animation is finished playing. Slower models cache and play the animation at a speed limited by how fast the simulation proceeds.

\section*{Playback Speed Control}

The Playback speed control adjusts the relative speed at which the animation plays back, as compared to the default speed of 1 . The relative playback speed is incremented by multiples of 2 and \(1 / 2\).

Moving the Playback speed control to the left slows the playback speed, by a factor of \(1 / 2\), \(1 / 4\), etc. Moving the Playback speed control to the right speeds up the playback speed, by a factor of 2,4 , etc.

\section*{Playback Time Counter}

The Playback time counter is both an indicator and a controller of animation playback time. A valid playback time is one that lies between 0 and the full simulation time, inclusive.
- During animation, or stopped at an intermediate time between start and end, the Playback time counter displays the current or instantaneous animation time.
- Entering a valid animation time in the Playback time counter field and pressing Enter at the keyboard moves the animation playback to the animation frame closest to whatever time you entered.

\section*{Global and Dynamic Cameras}
```

In this section...
"Camera Manager" on page 3-16
"Camera Overview" on page 3-16
"Global Camera" on page 3-17
"Dynamic Cameras" on page 3-17
"Camera Keyframes" on page 3-18
"Setting Keyframes" on page 3-18

```

\section*{Camera Manager}

Camera Manager is a Simscape Multibody utility that lets you create, edit, and delete dynamic cameras for the active model. You can create multiple dynamic cameras, each with a different trajectory, for a given model. The visualization pane context-sensitive menus enable you to set a particular camera as the active camera. To open Camera Manager, in the Mechanics Explorer tool menu, select Tools > Camera Manager.

\section*{Camera Overview}

Cameras define the visualization viewpoints used during animation playback. Mechanics Explorer provides two camera types-global and dynamic. The global camera provides a static viewpoint that you can manipulate interactively during animation playback. Dynamic cameras provide moving viewpoints that you define through Camera Manager.


\section*{Camera in a Model}

\section*{Global Camera}

The global camera is the default global camera in all visualization panes. This camera:
- Has no planned trajectory.

You must manipulate the camera manually to change the camera viewpoint, for example, by using the Pan, Rotate, and Zoom tools.
- Is external to the model.

You cannot position the global camera between bodies, for example, to prevent one body from obstructing another during animation playback.
- Uses an orthographic view mode.

Apparent body sizes remain constant regardless of object distance to the camera. This effect, shown in the figure, is consistent with a camera located relatively far from the model.

\section*{Dynamic Cameras}

Dynamic cameras provide alternate moving viewpoints that you can use during animation playback. These cameras:
- Have planned trajectories.

Every dynamic camera follows a trajectory that you prespecify through Camera Manager. You cannot use the Pan, Rotate, or Zoom buttons during animation playback.
- Can be internal to a model.

Dynamic cameras can be inside or outside the perimeter of a model. Position a camera between bodies for a viewpoint internal to the model.
- Use a perspective view mode.
- Apparent body sizes vary noticeably with object distance to the camera, creating a more realistic 3-D effect. This effect, shown in the figure, is consistent with a camera located relatively close to the model.


\section*{Camera Keyframes}

Dynamic camera trajectories are based on keyframes-animation stills, each with a viewpoint corresponding to a particular point in the animation timeline. Simscape Multibody software interpolates between the specified keyframes using the MATLAB pchip function to obtain a smooth camera trajectory.


\section*{Dynamic Camera Keyframes}

A dynamic camera can have one or more keyframes. Add keyframes to a camera to obtain more intricate camera trajectories. Cameras that have a single keyframe have no trajectory and are fixed during animation playback.

\section*{Setting Keyframes}

Camera Manager provides a Keyframes pane for specifying camera keyframes. You open this pane by clicking the Create button for a new camera or the Edit button for
an existing camera. For more information on creating cameras and setting camera keyframes, see "Create a Dynamic Visualization Camera".

The Keyframes pane of Camera Manager provides Previous and Next buttons that you can use to jump between camera keyframes. Use these buttons to select a keyframe for editing. Colored markers in the playback slider identify the various keyframes for the active dynamic camera.


Keyframe Markers in Playback Slider

\section*{Functions-Alphabetical List}

\section*{smnew}

Open new model with common Simscape Multibody blocks

\section*{Syntax}

\section*{smnew}
smnew(modelname)
smnew(modelname, solver)

\section*{Description}
smnew creates a new Simscape Multibody model, with required and commonly used blocks already on the model canvas, and opens the sim_lib library. The default model name is untitled and the default solver is ode45 (the recommended solver). The new model has Simscape data logging enabled by default, with logging limited to the last 10,000 time steps.

The new model contains the following blocks:
- World Frame
- Solid
- Rigid Transform
- Solver Configuration
- Mechanism Configuration
- PS-Simulink Converter
- Simulink-PS Converter
- Scope
smnew (modelname) creates a new Simscape Multibody model with the specified name. If you specify an invalid model name, the model name is untitled. The default solver is ode45, which is the recommended solver.
smnew (modelname, solver) creates a new Simscape Multibody model with the specified name and Simulink solver type. If you do not specify a model name, then the model name is untitled.

\section*{Input Arguments}

\section*{modelname}

String specifying the name for the new model. Do not include a file extension.
Default: untitled

\section*{solver}

String specifying the name of a Simulink solver. If you choose not to use the default ode45 solver, other recommended solver types for Simscape Multibody models are ode15s, ode23t, and ode14x. You can use other Simulink solvers, but, depending on the particular model, they may be less suitable. For more information, see "Improving Performance" and "Setting Up Solvers for Physical Models".

Default: ode45.

\section*{Examples}

\section*{New Simscape Multibody Model with Defaults}

Create a new Simscape Multibody model, using the default model name (untitled) and the default solver (ode45).
smnew
The command opens the sm_lib library, as well as a Simscape Multibody model called untitled, with several commonly used blocks.



\section*{Named New Simscape Multibody Model with custom Solver}

Create a new Simscape Multibody model, named simple_body. Use the ode23t solver.
```

sm_new('simple_body','ode23t')

```

The command opens the sm_lib library, as well as a Simscape Multibody model called simple_body, with several commonly used blocks. The model uses the ode23t solver.


\section*{See Also}
sm_lib | smimport

\section*{smimport}

Generate a Simscape Multibody model from an XML import file

\section*{Syntax}
[H,dataFileName] = smimport(xmlFileName)
[H,dataFileName] = smimport(xmlFileName,Name,Value)

\section*{Description}
[H,dataFileName] = smimport(xmlFileName) generates a Simscape Multibody model and supporting data file from an XML import file. H is the model handle and dataFileName is the name of the supporting data file. By default, the model and data file are named after the XML import file.
xmlFileName is the name of the XML import file. The file extension is optional. You can append the full or relative file path to the file name. In the absence of a file path, the function searches for the file name on the MATLAB path. If the XML import file name violates MATLAB naming rules, the model and data file take on modified versions of the XML file name.

The XML import file details the structure and properties of the multibody model you are importing. To be valid. the file must conform to the published Simscape Multibody XML schema. If you use a supported CAD application, you can generate a valid XML import file using the Simscape Multibody Link CAD plug-in.

The plug-in exports assemblies in two formats, one for Simscape Multibody models, the other for Simscape Multibody First Generation models. The smimport function accepts only XML import files generate for Simscape Multibody models. For Simscape Multibody First Generation models, use mech_import instead.

The data file provides the numerical values of the block parameters in the form of a MATLAB data structure. Blocks in the imported model reference the MATLAB structure fields through the model workspace. The default structure name is smiData.
[H,dataFileName] = smimport(xmlFileName, Name, Value) adds options for specifying the import mode and various file names. Set ImportMode to dataFile
in order to generate a new data file for a previously imported model. Specify PriorDataFile to catch unexpected changes to the XML import file, such as part name changes or the addition and deletion of parts.

\section*{Input Arguments}
xmlFileName - XML import file name
string
XML import file name. The XML import file provides Simscape Multibody software a detailed description of the multibody model to generate. The file extension and path are optional parts of the argument. In the absence of a file path, the function searches for the file name on the current MATLAB path. The file name must conform to the MATLAB naming conventions.

Example: 'robotto'

\section*{Name-Value Arguments}
'ImportMode ' - Choice of model import or data file update function modes string

Option to generate a new model or update existing model data. Set ImportMode to modelAndDataFile to generate a new model and data file. Set ImportMode to dataFile to generate a new data file for a previously imported model. The function does not update the block diagram itself. If you do not specify ImportMode, the function runs in modelAndDataFile mode.

Example: 'dataFile'
'ModelName ' - Name of the multibody model to generate string

Name of the Simscape Multibody model to generate. The model is saved in SLX format. This argument is not valid when ImportMode is set to dataFile. If you do not specify ModelName, the model file is named after the XML import file. If the XML import file name is inconsistent with MATLAB naming conventions, a modified version is used instead.
```

Example: 'robotto'

```

\section*{'DataFileName ' - Name of the parameter data file to generate string}

Name of the supporting parameter data file. The data file is an M file with the block parameter values referenced in the imported Simscape Multibody model. If you do not specify DataFileName, the data file is named after the XML import file. If the XML import file name is inconsistent with MATLAB naming conventions, a modified version is used instead.

Example: 'robottos_new_data'

\section*{'PriorDataFile' - Name of the last used parameter data file string}

Name of the last parameter data file associated with a previously imported model. The prior data file helps to identify changes requiring special attention, such as new physical units, added and deleted components, and model topology changes. This argument is valid only when ImportMode is set to dataFile.

Example: 'robottos_original_data'

\section*{'VariableName ' - Name of the MATLAB structure provided in the parameter data file string}

Name of the MATLAB data structure provided in the parameter data file. This structure contains the numerical values of all block parameters in the imported Simscape Multibody model. If you do not specify VariableName, the data structure is named smiData.

Example: 'robottosData'

\section*{Output Arguments}

\author{
H - Model handle
}
double
Model handle returned as a double. Use the model handle to get or set model parameters, for example, using the get_param and set_param functions.

\section*{dataFileName - Name of the parameter data file string}

Name of the parameter data file. The data file is an M file with the block parameter values referenced in the imported Simscape Multibody model.

\section*{Examples}

\section*{Import Robot Model}

Generate a robotic arm model from the sm_robot.xml import file included in your Simscape Multibody installation. At the MATLAB command prompt, enter the following code.
```

smimport('sm_robot');

```

At the MATLAB command prompt, enter the following code.
```

smimport('sm_robot');

```

\section*{Import Robot Model Using Custom File Names}

Generate a robotic arm model from the sm_robot.xml import file included in your Simscape Multibody installation. Specify the model name as robotto and the data file name as robottos_data_file. At the MATLAB command prompt, enter the following code.
```

smimport('sm_robot','ModelName','robotto',...
'DataFileName','robottos_data_file');

```

\section*{Regenerate the Data File for the Robot Model}

Regenerate the data file for the previously imported robotic arm model. Specify the data file name as robottos_new_data_file to avoid overwriting the original data file. At the MATLAB command prompt, enter the following code.
```

smimport('sm_robot','ImportMode','dataFile','DataFileName',...
'robottos_new_data_file','PriorDataFile','robottos_data_file');

```

Point the previously generated model to the new data file and reinitialize the model workspace using the MATLAB following code.
```

hws = get_param(bdroot,'modelworkspace');

```
```

hws.DataSource = 'MATLAB File';
hws.FileName = 'robotFileData';
hws.reload;

```

You can perform the same task using Model Explorer. In the Model Workspace pane for the imported model, update the File Name parameter. Then, click the Reinitialize from Source button.

\author{
See Also \\ sm_lib | smnew
}

\section*{sm_lib}

Open the Simscape Multibody block library

\section*{Syntax}
sm_lib

\section*{Description}
sm_lib opens the Simscape Multibody block library in a separate window. Double-click a sublibrary to view the blocks that it provides. The table summarizes the purpose of each sublibrary.
\begin{tabular}{ll} 
Sublibrary & Use to Model \\
Body Elements & \begin{tabular}{l} 
Rigid body geometry, inertia, and graphical \\
appearance
\end{tabular} \\
Constraints & \begin{tabular}{l} 
Kinematic constraints on the relative \\
motion of two rigid body frames
\end{tabular} \\
Forces and Torques & \begin{tabular}{l} 
Generic and specialized forces and torques \\
acting on or between rigid body frames
\end{tabular} \\
Frames and Transforms & \begin{tabular}{l} 
Frames and their spatial relationships
\end{tabular} \\
Gears and Couplings & \begin{tabular}{l} 
Specialized gear constraints between rigid \\
bodies
\end{tabular} \\
Joints & \begin{tabular}{l} 
Connections between rigid bodies with \\
desired translational and rotational \\
degrees of freedom
\end{tabular} \\
Utilities & \begin{tabular}{l} 
Mechanical and simulation-specific \\
parameters for an entire mechanism
\end{tabular}
\end{tabular}

\section*{More About}

\section*{Tips}
- Use sm_lib to open the Simscape Multibody block library from the Simscape Multibody command line.
- sm_lib loads only the Simscape Multibody block library, so you do not have to wait for other Simulink libraries to load.

\author{
See Also \\ smimport \| smnew
}```


[^0]:    Aligned Axes

[^1]:    Aligned Axes

